scholarly journals Distilling vector space model scores for the assessment of constructed responses with bifactor Inbuilt Rubric method and latent variables

Author(s):  
José Ángel Martínez-Huertas ◽  
Ricardo Olmos ◽  
Guillermo Jorge-Botana ◽  
José A. León

AbstractIn this paper, we highlight the importance of distilling the computational assessments of constructed responses to validate the indicators/proxies of constructs/trins using an empirical illustration in automated summary evaluation. We present the validation of the Inbuilt Rubric (IR) method that maps rubrics into vector spaces for concepts’ assessment. Specifically, we improved and validated its scores’ performance using latent variables, a common approach in psychometrics. We also validated a new hierarchical vector space, namely a bifactor IR. 205 Spanish undergraduate students produced 615 summaries of three different texts that were evaluated by human raters and different versions of the IR method using latent semantic analysis (LSA). The computational scores were validated using multiple linear regressions and different latent variable models like CFAs or SEMs. Convergent and discriminant validity was found for the IR scores using human rater scores as validity criteria. While this study was conducted in the Spanish language, the proposed scheme is language-independent and applicable to any language. We highlight four main conclusions: (1) Accurate performance can be observed in topic-detection tasks without hundreds/thousands of pre-scored samples required in supervised models. (2) Convergent/discriminant validity can be improved using measurement models for computational scores as they adjust for measurement errors. (3) Nouns embedded in fragments of instructional text can be an affordable alternative to use the IR method. (4) Hierarchical models, like the bifactor IR, can increase the validity of computational assessments evaluating general and specific knowledge in vector space models. R code is provided to apply the classic and bifactor IR method.

2019 ◽  
Author(s):  
Axel Mayer

Building on the stochastic theory of causal effects and latent state-trait theory, this article shows how a comprehensive analysis of the effectiveness of interventions can be conducted based on latent variable models. The proposed approach offers new ways to evaluate the differential effectiveness of interventions for substantive researchers in experimental and observational studies while allowing for complex measurement models. The key definitions and assumptions of the stochastic theory of causal effects are first introduced and then four statistical models that can be used to estimate various types of causal effects with latent state-trait models are developed and illustrated: The multistate effect model with and without method factors, the true-change effect model, and the multitrait effect model. All effect models with latent variables are implemented based on multigroup structural equation modeling with the EffectLiteR approach. Particular emphasis is placed on the development of models with interactions that allow for interindividual differences in treatment effects based on latent variables. Open source software code is provided for all models.


Methodology ◽  
2019 ◽  
Vol 15 (Supplement 1) ◽  
pp. 15-28 ◽  
Author(s):  
Axel Mayer

Abstract. Building on the stochastic theory of causal effects and latent state-trait theory, this article shows how a comprehensive analysis of the effects of interventions can be conducted based on latent variable models. The proposed approach offers new ways to evaluate the differential effects of interventions for substantive researchers in experimental and observational studies while allowing for complex measurement models. The key definitions and assumptions of the stochastic theory of causal effects are first introduced and then four statistical models that can be used to estimate various types of causal effects with latent state-trait models are developed and illustrated: The multistate effect model with and without method factors, the true-change effect model, and the multitrait effect model. All effect models with latent variables are implemented based on multigroup structural equation modeling with the EffectLiteR approach. Particular emphasis is placed on the development of models with interactions that allow for interindividual differences in treatment effects based on latent variables. Open source software code is provided for all models.


Psychometrika ◽  
2022 ◽  
Author(s):  
Anders Skrondal ◽  
Sophia Rabe-Hesketh

AbstractIn psychometrics, the canonical use of conditional likelihoods is for the Rasch model in measurement. Whilst not disputing the utility of conditional likelihoods in measurement, we examine a broader class of problems in psychometrics that can be addressed via conditional likelihoods. Specifically, we consider cluster-level endogeneity where the standard assumption that observed explanatory variables are independent from latent variables is violated. Here, “cluster” refers to the entity characterized by latent variables or random effects, such as individuals in measurement models or schools in multilevel models and “unit” refers to the elementary entity such as an item in measurement. Cluster-level endogeneity problems can arise in a number of settings, including unobserved confounding of causal effects, measurement error, retrospective sampling, informative cluster sizes, missing data, and heteroskedasticity. Severely inconsistent estimation can result if these challenges are ignored.


Author(s):  
Simon Jackman

This article shows that the words ‘behavioural’ and ‘behaviour’ turn out to be better measures as judged by tests of criterion and convergent validity. It specifically discusses measurement problems. Further, it pertains to statistical models that link latent variables and their observed indicators as measurement models. The success of measurement — the quality of the inferences provided by a measurement model — is usually assessed with reference to two key concepts: validity and reliability. The distinct uses of measures of latent variables are reported. The article then deals with the costs of ignoring measurement error. Additionally, a quick introduction to factor analysis, item-response models, and a very general class of latent variable models are briefly given. Moreover, it describes the inference for discrete latent variables and the measurement in a dynamic setting.


2021 ◽  
Vol 16 (1) ◽  
pp. 1-35
Author(s):  
Luyue Lin ◽  
Xin Zheng ◽  
Bo Liu ◽  
Wei Chen ◽  
Yanshan Xiao

Over the past few years, we have made great progress in image categorization based on convolutional neural networks (CNNs). These CNNs are always trained based on a large-scale image data set; however, people may only have limited training samples for training CNN in the real-world applications. To solve this problem, one intuition is augmenting training samples. In this article, we propose an algorithm called Lavagan ( La tent V ariables A ugmentation Method based on G enerative A dversarial N ets) to improve the performance of CNN with insufficient training samples. The proposed Lavagan method is mainly composed of two tasks. The first task is that we augment a number latent variables (LVs) from a set of adaptive and constrained LVs distributions. In the second task, we take the augmented LVs into the training procedure of the image classifier. By taking these two tasks into account, we propose a uniform objective function to incorporate the two tasks into the learning. We then put forward an alternative two-play minimization game to minimize this uniform loss function such that we can obtain the predictive classifier. Moreover, based on Hoeffding’s Inequality and Chernoff Bounding method, we analyze the feasibility and efficiency of the proposed Lavagan method, which manifests that the LV augmentation method is able to improve the performance of Lavagan with insufficient training samples. Finally, the experiment has shown that the proposed Lavagan method is able to deliver more accurate performance than the existing state-of-the-art methods.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Ellen Roemer ◽  
Florian Schuberth ◽  
Jörg Henseler

PurposeOne popular method to assess discriminant validity in structural equation modeling is the heterotrait-monotrait ratio of correlations (HTMT). However, the HTMT assumes tau-equivalent measurement models, which are unlikely to hold for most empirical studies. To relax this assumption, the authors modify the original HTMT and introduce a new consistent measure for congeneric measurement models: the HTMT2.Design/methodology/approachThe HTMT2 is designed in analogy to the HTMT but relies on the geometric mean instead of the arithmetic mean. A Monte Carlo simulation compares the performance of the HTMT and the HTMT2. In the simulation, several design factors are varied such as loading patterns, sample sizes and inter-construct correlations in order to compare the estimation bias of the two criteria.FindingsThe HTMT2 provides less biased estimations of the correlations among the latent variables compared to the HTMT, in particular if indicators loading patterns are heterogeneous. Consequently, the HTMT2 should be preferred over the HTMT to assess discriminant validity in case of congeneric measurement models.Research limitations/implicationsHowever, the HTMT2 can only be determined if all correlations between involved observable variables are positive.Originality/valueThis paper introduces the HTMT2 as an improved version of the traditional HTMT. Compared to other approaches assessing discriminant validity, the HTMT2 provides two advantages: (1) the ease of its computation, since HTMT2 is only based on the indicator correlations, and (2) the relaxed assumption of tau-equivalence. The authors highly recommend the HTMT2 criterion over the traditional HTMT for assessing discriminant validity in empirical studies.


Methodology ◽  
2011 ◽  
Vol 7 (4) ◽  
pp. 157-164
Author(s):  
Karl Schweizer

Probability-based and measurement-related hypotheses for confirmatory factor analysis of repeated-measures data are investigated. Such hypotheses comprise precise assumptions concerning the relationships among the true components associated with the levels of the design or the items of the measure. Measurement-related hypotheses concentrate on the assumed processes, as, for example, transformation and memory processes, and represent treatment-dependent differences in processing. In contrast, probability-based hypotheses provide the opportunity to consider probabilities as outcome predictions that summarize the effects of various influences. The prediction of performance guided by inexact cues serves as an example. In the empirical part of this paper probability-based and measurement-related hypotheses are applied to working-memory data. Latent variables according to both hypotheses contribute to a good model fit. The best model fit is achieved for the model including latent variables that represented serial cognitive processing and performance according to inexact cues in combination with a latent variable for subsidiary processes.


2019 ◽  
Author(s):  
Kevin Constante ◽  
Edward Huntley ◽  
Emma Schillinger ◽  
Christine Wagner ◽  
Daniel Keating

Background: Although family behaviors are known to be important for buffering youth against substance use, research in this area often evaluates a particular type of family interaction and how it shapes adolescents’ behaviors, when it is likely that youth experience the co-occurrence of multiple types of family behaviors that may be protective. Methods: The current study (N = 1716, 10th and 12th graders, 55% female) examined associations between protective family context, a latent variable comprised of five different measures of family behaviors, and past 12 months substance use: alcohol, cigarettes, marijuana, and e-cigarettes. Results: A multi-group measurement invariance assessment supported protective family context as a coherent latent construct with partial (metric) measurement invariance among Black, Latinx, and White youth. A multi-group path model indicated that protective family context was significantly associated with less substance use for all youth, but of varying magnitudes across ethnic-racial groups. Conclusion: These results emphasize the importance of evaluating psychometric properties of family-relevant latent variables on the basis of group membership in order to draw appropriate inferences on how such family variables relate to substance use among diverse samples.


2021 ◽  
Vol 13 (2) ◽  
pp. 51
Author(s):  
Lili Sun ◽  
Xueyan Liu ◽  
Min Zhao ◽  
Bo Yang

Variational graph autoencoder, which can encode structural information and attribute information in the graph into low-dimensional representations, has become a powerful method for studying graph-structured data. However, most existing methods based on variational (graph) autoencoder assume that the prior of latent variables obeys the standard normal distribution which encourages all nodes to gather around 0. That leads to the inability to fully utilize the latent space. Therefore, it becomes a challenge on how to choose a suitable prior without incorporating additional expert knowledge. Given this, we propose a novel noninformative prior-based interpretable variational graph autoencoder (NPIVGAE). Specifically, we exploit the noninformative prior as the prior distribution of latent variables. This prior enables the posterior distribution parameters to be almost learned from the sample data. Furthermore, we regard each dimension of a latent variable as the probability that the node belongs to each block, thereby improving the interpretability of the model. The correlation within and between blocks is described by a block–block correlation matrix. We compare our model with state-of-the-art methods on three real datasets, verifying its effectiveness and superiority.


2014 ◽  
Vol 14 (2) ◽  
pp. 229-244 ◽  
Author(s):  
Ali Mohammed Alashwal ◽  
Hamzah Abdul-Rahman

Purpose – The purpose of this paper is to determine the measurement constructs of learning within construction projects' milieu. The literature indicated some mechanisms of learning in projects under four aspects, namely knowledge sharing, knowledge creation, team action to learn, and learning support. The empirical study attempts to verify whether intra-project learning can be measured through these aspects. Design/methodology/approach – The study used a survey method to collect the data from 36 mega-sized building projects in Malaysia. In total, 203 questionnaires were collected from professionals working in the sites of these projects. The data were analysed using principal component analysis (PCA) to determine the constructs of intra-project learning. Partial least squares-path modeling was used then to confirm the results of PCA and determine the contribution of each construct to intra-project learning. Findings – The results affirmed two constructs of intra-project learning, named, social and technical and each consisted of four indicators of learning. Originality/value – The paper emphasized the socio-technical perspective of learning and contributed to developing a hierarchical measurement model of learning in construction project. A project manager can propose new initiatives in response to the new perspective of learning for team building and continuous development. Lastly, the paper provides a comprehensive presentation of how to estimate the hierarchical measurement models of project learning as a latent variable.


Sign in / Sign up

Export Citation Format

Share Document