scholarly journals Tenacibactins K–M, cytotoxic siderophores from a coral-associated gliding bacterium of the genus Tenacibaculum

2022 ◽  
Vol 18 ◽  
pp. 110-119
Author(s):  
Yasuhiro Igarashi ◽  
Yiwei Ge ◽  
Tao Zhou ◽  
Amit Raj Sharma ◽  
Enjuro Harunari ◽  
...  

HPLC/DAD-based chemical investigation of a coral-associated gliding bacterium of the genus Tenacibaculum yielded three desferrioxamine-class siderophores, designated tenacibactins K (1), L (2), and M (3). Their chemical structures, comprising repeated cadaverine–succinic acid motifs terminated by a hydroxamic acid functionality, were elucidated by NMR and negative MS/MS experiments. Compounds 1–3 were inactive against bacteria and a yeast but displayed cytotoxicity against 3Y1 rat embryonic fibroblasts and P388 murine leukemia cells at GI50 in submicromolar to micromolar ranges. Their iron-chelating activity was comparable to deferoxamine mesylate.

APOPTOSIS ◽  
2008 ◽  
Vol 13 (4) ◽  
pp. 573-587 ◽  
Author(s):  
Lenka Doubravská ◽  
Šárka Šímová ◽  
Lukas Cermak ◽  
Tomáš Valenta ◽  
Vladimír Kořínek ◽  
...  

Molekul ◽  
2017 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Dewa Gede Katja ◽  
Kindi Farabi ◽  
Nurlelasari Nurlelasari ◽  
Desi Harneti ◽  
Euis Julaeha ◽  
...  

Three cytotoxic steroids, stigmasterol (1), stigmast-5-en-3b-ol (2) and b-sitosterol-3-O-acetate (3) were isolated from the stem bark of Chisocheton cumingianus. The chemical structures of those compounds were identified based on spectroscopic data and by comparison with those data previously reported. All of the compounds isolated were evaluated for their cytotoxic effects against P-388 murine leukemia cells in vitro. Compounds 1-3 showed cytotoxicity activity against P-388 murine leukemia cells with IC50values of 12.4, 60.8, and ˃ 100 mg/mL, respectively.


2016 ◽  
Vol 16 (12) ◽  
pp. 1615-1621 ◽  
Author(s):  
Erik Andrade-Jorge ◽  
Marycarmen Godínez-Victoria ◽  
Luvia Enid Sánchez-Torres ◽  
Luis Humberto Fabila-Castillo ◽  
José G. Trujillo-Ferrara

2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Nilsa Rivera-Del Valle ◽  
Shan Gao ◽  
Claudia P. Miller ◽  
Joy Fulbright ◽  
Carolina Gonzales ◽  
...  

Histone deacetylase inhibitors (HDACi) have become a promising new avenue for cancer therapy, and many are currently in Phase I/II clinical trials for various tumor types. In the present study, we show that apoptosis induction and histone alterations by PCI-24781, a novel hydroxamic acid-based HDAC inhibitor, require caspase-8 and the adaptor molecule, Fas-associated death domain (FADD), in acute leukemia cells. PCI-24781 treatment also causes an increase in superoxide levels, which has been reported for other HDACi. However, an antioxidant does not reverse histone alterations caused by PCI-24781, indicating that ROS generation is likely downstream of the effects that PCI-24781 exerts on histone H3. Taken together, these results provide insight into the mechanism of apoptosis induction by PCI-24781 in leukemia by highlighting the roles of caspase-8, FADD and increased superoxide levels.


2012 ◽  
Vol 2012 ◽  
pp. 1-13 ◽  
Author(s):  
Jai-Sing Yang ◽  
Chia-Chun Wu ◽  
Chao-Lin Kuo ◽  
Yu-Hsuan Lan ◽  
Chin-Chung Yeh ◽  
...  

We investigated the molecular mechanisms of cell cycle arrest and apoptotic death induced bySolanum lyratumextracts (SLE) or diosgenin in WEHI-3 murine leukemia cellsin vitroand antitumor activityin vivo. Diosgenin is one of the components of SLE. Our study showed that SLE and diosgenin decreased the viable WEHI-3 cells and inducedG0/G1phase arrest and apoptosis in concentration- or time-dependent manners. Both reagents increased the levels of ROS production and decreased the mitochondrial membrane potential (ΔΨm). SLE- and diosgenin-triggered apoptosis is mediated through modulating the extrinsic and intrinsic signaling pathways. Intriguingly, the p53 inhibitor (pifithrin-α), anti-Fas ligand (FasL) mAb, and specific inhibitors of caspase-8 (z-IETD-fmk), caspase-9 (z-LEHD-fmk), and caspase-3 (z-DEVD-fmk) blocked SLE- and diosgenin-reduced cell viability of WEHI-3 cells. Thein vivostudy demonstrated that SLE has marked antitumor efficacy against tumors in the WEHI-3 cell allograft model. In conclusion, SLE- and diosgenin-inducedG0/G1phase arrest and triggered extrinsic and intrinsic apoptotic pathways via p53 activation in WEHI-3 cells. SLE also exhibited antitumor activityin vivo. Our findings showed that SLE may be potentially efficacious in the treatment of leukemia in the future.


Sign in / Sign up

Export Citation Format

Share Document