High Spatial Resolution Remote Sensing Image Classification Based on Deep Learning

2016 ◽  
Vol 36 (4) ◽  
pp. 0428001 ◽  
Author(s):  
刘大伟 Liu Dawei ◽  
韩玲 Han Ling ◽  
韩晓勇 Han Xiaoyong
Author(s):  
Sumit Kaur

Abstract- Deep learning is an emerging research area in machine learning and pattern recognition field which has been presented with the goal of drawing Machine Learning nearer to one of its unique objectives, Artificial Intelligence. It tries to mimic the human brain, which is capable of processing and learning from the complex input data and solving different kinds of complicated tasks well. Deep learning (DL) basically based on a set of supervised and unsupervised algorithms that attempt to model higher level abstractions in data and make it self-learning for hierarchical representation for classification. In the recent years, it has attracted much attention due to its state-of-the-art performance in diverse areas like object perception, speech recognition, computer vision, collaborative filtering and natural language processing. This paper will present a survey on different deep learning techniques for remote sensing image classification. 


Author(s):  
Linmei Wu ◽  
Li Shen ◽  
Zhipeng Li

A kernel-based method for very high spatial resolution remote sensing image classification is proposed in this article. The new kernel method is based on spectral-spatial information and structure information as well, which is acquired from topic model, Latent Dirichlet Allocation model. The final kernel function is defined as <i>K</i>&thinsp;=&thinsp;<i>u<sub>1</sub></i><i>K</i><sup>spec</sup>&thinsp;+&thinsp;<i>u<sub>2</sub></i><i>K</i><sup>spat</sup>&thinsp;+&thinsp;<i>u<sub>3</sub></i><i>K</i><sup>stru</sup>, in which <i>K</i><sup>spec</sup>, <i>K</i><sup>spat</sup>, <i>K</i><sup>stru</sup> are radial basis function (RBF) and <i>u<sub>1</sub></i>&thinsp;+&thinsp;<i>u<sub>2</sub></i>&thinsp;+&thinsp;<i>u<sub>3</sub></i>&thinsp;=&thinsp;1. In the experiment, comparison with three other kernel methods, including the spectral-based, the spectral- and spatial-based and the spectral- and structure-based method, is provided for a panchromatic QuickBird image of a suburban area with a size of 900&thinsp;×&thinsp;900 pixels and spatial resolution of 0.6&thinsp;m. The result shows that the overall accuracy of the spectral- and structure-based kernel method is 80&thinsp;%, which is higher than the spectral-based kernel method, as well as the spectral- and spatial-based which accuracy respectively is 67&thinsp;% and 74&thinsp;%. What's more, the accuracy of the proposed composite kernel method that jointly uses the spectral, spatial, and structure information is highest among the four methods which is increased to 83&thinsp;%. On the other hand, the result of the experiment also verifies the validity of the expression of structure information about the remote sensing image.


2021 ◽  
Author(s):  
Rajagopal T K P ◽  
Sakthi G ◽  
Prakash J

Abstract Hyperspectral remote sensing based image classification is found to be a very widely used method employed for scene analysis that is from a remote sensing data which is of a high spatial resolution. Classification is a critical task in the processing of remote sensing. On the basis of the fact that there are different materials with reflections in a particular spectral band, all the traditional pixel-wise classifiers both identify and also classify all materials on the basis of their spectral curves (or pixels). Owing to the dimensionality of the remote sensing data of high spatial resolution along with a limited number of labelled samples, a remote sensing image of a high spatial resolution tends to suffer from something known as the Hughes phenomenon which can pose a serious problem. In order to overcome such a small-sample problem, there are several methods of learning like the Support Vector Machine (SVM) along with the other methods that are kernel based and these were introduced recently for a remote sensing classification of the image and this has shown a good performance. For the purpose of this work, an SVM along with Radial Basis Function (RBF) method was proposed. But, a feature learning approach for the classification of the hyperspectral image is based on the Convolutional Neural Networks (CNNs). The results of the experiment that were based on various image datasets that were hyperspectral which implies that the method proposed will be able to achieve a better performance of classification compared to other traditional methods like the SVM and the RBF kernel and also all conventional methods based on deep learning (CNN).


Sign in / Sign up

Export Citation Format

Share Document