Influence of Oil Palm Trunk Fiber Volume Fraction on Water Absorption and Porosity of Lightweight Foamed Concrete

2020 ◽  
Vol 14 (4) ◽  

Global apprehension and governance on carbon footprint emissions have driven a considerable amount of research on green concrete around the world. In the present day, it should be acknowledged that most of the construction products are produced using materials that require a high amount of energy and not naturally sustainable which can lead to global problem. Hence, the use of natural fiber like Cocos Nucifera Linn Fiber (CNF) in foamed concrete is considered as a useful option in making concrete as a sustainable material to overcome this problem. CNF refer to agricultural waste or by-products that can be obtained through the distribution of coconut oil and can be accumulated in a large amount in Malaysia. Moreover, it should be understood that CNF fibers are often discarded as agricultural wastes. Hence, the aim of the present study is to perform experimental studies in order to discern the effect of CNF volume fraction on water absorption capacity and porosity of foamed concrete. There were total of 21 mixes were prepared and test in this study. Three densities of 650 kg/m3 , 1050 kg/m3 , and 1450 kg/m3 were fabricated. CNF was used as additives in the present study at 0.1%, 0.2%, 0.3%, 0.4%, 0.5%, and 0.6% by volume fraction of the total mix. The results show that the water absorption of foamed concrete was slower at the beginning when it contained higher CNF volume fraction than the lower CNF volume fraction. CNF absorbed water and then expanded amid blending. CNF could anticipate fragility and lose microstructure arrangement, which reduces the capacity to oppose excessive loads. On the other hand, the porosity of foamed concrete is reduced due to the increase of CNF for each density examined in the present study. This occurs because of the reaction between the cement paste and CNF. Furthermore, higher density foamed concrete prompts the decrement of permeable structure, while the CNF serves to bridge the matrix. The arrangement of pores for plain foamed concrete without the incorporation of fiber was bigger compared to foamed concrete with the incorporation of CNF. CNF additionally helps in making an increasingly uniform distribution of the air voids. Thus, it will hinder bubbles from merging with one another


2013 ◽  
Vol 3 (1) ◽  
Author(s):  
I Putu Krishna Artha Sastra ◽  
Nasmi Herlina Sari ◽  
S. Sujita

The purpose of this study is to investigate and analyze about absorption properties of the composite laminate, microstructure hybrid sisal and banana fiber with epoxy matrix. Composite manufacturing was done by hand lay-up method with a ratio of fiber volume fraction of sisal and banana trunks 0:40, 10:30, 15:25, 20:20, 30:10, 40:0 (%) With direction of sisalana agave fiber orientation and banana fiber by fiber length according to the mold. Specimen testing was done by the water absorption test with the standard ASTM D571-8,. Test results obtained from the average water absorption properties of composites with the highest ratio of fiber volume fraction of 40%: 0% is 42.4% while the lowest average water absorption properties contained in the composite with fiber volume fraction of 0%: 40%, with percentage of 11.5%. Therefore we can conclude the increasing volume fraction of sisal fiber withidirection of  fiber orientation, the lower of water absorption properties and conversely increasing the volume of woven banana fiber orientation, the higher of water absorptionproperties.


2015 ◽  
Vol 5 (2) ◽  
Author(s):  
Saiful Bachtiar ◽  
Emmy Dyah Sulistyowati ◽  
Agus Dwi Catur

The use of composite materials as an alternative to metallic materials in the field of engineering more widespread, not only as an interior daneksterior in the automotive field but also extended to other areas such as property and architecture is to reduce the incidence of fire one only to find a replacement for wood as a raw material of houses and buildings with other alternative materials are more fire resistant, the material need not be limited in mechanical strength, but also on the physical properties. Therefore, the aim of this study was to analyze the absorption properties of water and fire index in the fiber-reinforced composite board pandanus leaves thorns and wood sawdust filler sengon with polyester resin as matriknya.Analysis of the absorption properties of the water carried by the ASTM D 5529 with a variation of the length of time of immersion (10, 20, and 30 days) and the fiber volume fraction (0%, 10%, 20% and 30%). Testing index of the flame using ASTM E1321 with long burning time of 10 minutes. To test the effect of soaking time and a fiber volume fraction of the weight gain, volume, and density on the board fiber composite pandanus thorns with 10% filler wood sawdust sengon diguanakn Two Ways Analysis Of Variance, and the effect of fiber volume fraction to index Flash Fire is used One Ways Analysis Of Variance.The results showed that the water absorption is affected by fiber volume fraction and longer soaking time. The largest percentage of water absorption occurs in the volume fraction of 30% with long soaking time of 30 days is 24.41%. Similarly, the highest percentage swelling occurs in composite board with a volume fraction of 30% with a 30-day long soaking time is 11:22% .Then the flame to the percentage of the index without fiber composite board has a greater percentage is 167.03%. By contrast the percentage of board composite index gained shortest of composite board with a fiber volume fraction of 30% ie 70.25% composite board with a fiber volume fraction of 30% also have a flame index is lower than the comparison is with wood composites sengon.


2021 ◽  
pp. 002199832110047
Author(s):  
Mahmoud Mohamed ◽  
Siddhartha Brahma ◽  
Haibin Ning ◽  
Selvum Pillay

Fiber prestressing during matrix curing can significantly improve the mechanical properties of fiber-reinforced polymer composites. One primary reason behind this improvement is the generated compressive residual stress within the cured matrix, which impedes cracks initiation and propagation. However, the prestressing force might diminish progressively with time due to the creep of the compressed matrix and the relaxation of the tensioned fiber. As a result, the initial compressive residual stress and the acquired improvement in mechanical properties are prone to decline over time. Therefore, it is necessary to evaluate the mechanical properties of the prestressed composites as time proceeds. This study monitors the change in the tensile and flexural properties of unidirectional prestressed glass fiber reinforced epoxy composites over a period of 12 months after manufacturing. The composites were prepared using three different fiber volume fractions 25%, 30%, and 40%. The results of mechanical testing showed that the prestressed composites acquired an initial increase up to 29% in the tensile properties and up to 32% in the flexural properties compared to the non-prestressed counterparts. Throughout the 12 months of study, the initial increase in both tensile and flexural strength showed a progressive reduction. The loss ratio of the initial increase was observed to be inversely proportional to the fiber volume fraction. For the prestressed composites fabricated with 25%, 30%, and 40% fiber volume fraction, the initial increase in tensile and flexural strength dropped by 29%, 25%, and 17%, respectively and by 34%, 26%, and 21%, respectively at the end of the study. Approximately 50% of the total loss took place over the first month after the manufacture, while after the sixth month, the reduction in mechanical properties became insignificant. Tensile modulus started to show a very slight reduction after the fourth/sixth month, while the flexural modulus reduction was observed from the beginning. Although the prestressed composites displayed time-dependent losses, their long-term mechanical properties still outperformed the non-prestressed counterparts.


2019 ◽  
Vol 253 ◽  
pp. 02004
Author(s):  
Wael Alnahhal ◽  
Omar Aljidda

This study investigates the effect of using different volume fractions of basalt macro fibers (BMF) on the flexural behavior of concrete beams made with 100% recycled concrete aggregates (RCA) experimentally. A total of 4 reinforced concrete (RC) beam specimens were flexural tested until failure. The parameter investigated included the BMF volume fraction (0%, 0.5%, 1%, and 1.5%). The testing results of the specimens were compared to control beam specimen made with no added fibers. The experimental results showed that adding BMF improves the flexural capacity of the tested beams.


2012 ◽  
Vol 583 ◽  
pp. 150-153
Author(s):  
Qian Liu ◽  
Xiao Yuan Pei ◽  
Jia Lu Li

The modal properties of carbon fiber woven fabric (with fiber orientation of 45°/-45°) / epoxy resin composites with different fiber volume fraction were studied by using single input and single output free vibration of cantilever beam hammering modal analysis method. The effect of different fiber volume fraction on the modal parameters of laminated composites was analyzed. The experimental results show that with the fiber volume fraction increasing, the natural frequency of laminated composites becomes larger and damping ratio becomes smaller. The fiber volume fraction smaller, the peak value of natural frequency becomes lower and the attenuating degree of acceleration amplitude becomes faster.


Sign in / Sign up

Export Citation Format

Share Document