scholarly journals Ultra-light Colorless and Green Glass Foam Produced by Microwave Radiation

2021 ◽  
Vol 2 (1) ◽  
pp. 1-12
Author(s):  
Lucian Paunescu ◽  
Sorin Mircea Axinte ◽  
Felicia Cosmulescu ◽  
Marius Florin Dragoescu ◽  
Bogdan Valentin Paunescu

Abstract                                                         According to the research objective that was the basis of the paper, an ultra-light glass foam with an apparent density of 0.14 g/cm3 was experimentally made from 98.9% post-consumer glass bottle and 1% CaCO3 as a foaming agent by sintering/foaming at 823 ºC in microwave field with a very low specific energy consumption (0.70 kWh/kg). A very advanced mechanical processing of glass waste (below 32 μm) and a very fine granulation (below 6.3 μm) of CaCO3 were the solutions adopted to obtain this high-performance product. The originality of the work is the use of the unconventional technique of predominantly direct microwave heating with a very high energy efficiency, applied by authors in recent years and presented in several previous papers.

2020 ◽  
Vol 26 (1) ◽  
pp. 57-64
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE

The paper presents experimental results obtained in the process of making glass foam from glass waste using a cheap foaming agent (natural dolomite). The originality of the work is the application of the microwave energy, unlike the conventional techniques commonly used in the world. The main advantage highlighted by the experiments is the very low specific energy consumption (below 1.5 kWh/kg), due to the peculiarities of the microwave heating technique. The foamed product has physical, mechanical and morphological characteristics (density between 0.30-0.32 g/cm3, thermal conductivity between 0.064-0.067 W/m·K, compressive strength in the range 2.2-2.6 MPa), which are similar to those of foams made by conventional methods and are suitable for its use as insulating material in construction.


2020 ◽  
Vol 26 (1) ◽  
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE

<p>The paper presents experimental results obtained in the process of making glass foam from glass waste using a cheap foaming agent (natural dolomite). The originality of the work is the application of the microwave energy, unlike the conventional techniques commonly used in the world. The main advantage highlighted by the experiments is the very low specific energy consumption (below 1.5 kWh/kg), due to the peculiarities of the microwave heating technique. The foamed product has physical, mechanical and morphological characteristics (density between 0.30-0.32 g/cm<sup>3</sup>, thermal conductivity between 0.064-0.067 W/m·K, compressive strength in the range 2.2-2.6 MPa), which are similar to those of foams made by conventional methods and are suitable for its use as insulating material in construction.</p>


2018 ◽  
Vol 24 (1) ◽  
pp. 30-35
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE ◽  
BOGDAN VALENTIN PAUNESCU

Experimental results obtained in the process of manufacturing dense glass foam using the microwave energy are presented in the work. The glass foam is produced from bottle glass waste, calcium carbonate as foaming agent and borax as fluxing agent. The high compressive strength (2.5 - 6.2 MPa) is the main mechanical feature of this product, which together with other physical and morphological features (apparent density 0.60 – 0.90 g/cm3, porosity 59.1 – 72.7%, thermal conductivity 0.081 – 0.105 W m K, water absorption 0.5 – 1.0%, pore size 0.5 – 3 mm), are appropriate for using as a substitute for similar building materials existing on the market.


2018 ◽  
Vol 24 (1) ◽  
Author(s):  
LUCIAN PAUNESCU ◽  
MARIUS FLORIN DRAGOESCU ◽  
SORIN MIRCEA AXINTE ◽  
BOGDAN VALENTIN PAUNESCU

<p>Experimental results obtained in the process of manufacturing dense glass foam using the microwave energy are presented in the work. The glass foam is produced from bottle glass waste, calcium carbonate as foaming agent and borax as fluxing agent. The high compressive strength (2.5 - 6.2 MPa) is the main mechanical feature of this product, which together with other physical and morphological features (apparent density 0.60 – 0.90 g/cm<sup>3</sup>, porosity 59.1 – 72.7%, thermal conductivity 0.081 – 0.105 W m K, water absorption 0.5 – 1.0%, pore size 0.5 – 3 mm), are appropriate for using as a substitute for similar building materials existing on the market.</p>


1964 ◽  
Vol 82 (1) ◽  
pp. 3-81 ◽  
Author(s):  
Evgenii L. Feinberg ◽  
Dmitrii S. Chernavskii

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
L. Whitmore ◽  
R. I. Mackay ◽  
M. van Herk ◽  
J. K. Jones ◽  
R. M. Jones

AbstractThis paper presents the first demonstration of deeply penetrating dose delivery using focused very high energy electron (VHEE) beams using quadrupole magnets in Monte Carlo simulations. We show that the focal point is readily modified by linearly changing the quadrupole magnet strength only. We also present a weighted sum of focused electron beams to form a spread-out electron peak (SOEP) over a target region. This has a significantly reduced entrance dose compared to a proton-based spread-out Bragg peak (SOBP). Very high energy electron (VHEE) beams are an exciting prospect in external beam radiotherapy. VHEEs are less sensitive to inhomogeneities than proton and photon beams, have a deep dose reach and could potentially be used to deliver FLASH radiotherapy. The dose distributions of unfocused VHEE produce high entrance and exit doses compared to other radiotherapy modalities unless focusing is employed, and in this case the entrance dose is considerably improved over existing radiations. We have investigated both symmetric and asymmetric focusing as well as focusing with a range of beam energies.


1981 ◽  
Vol 8 (3) ◽  
pp. 205-213 ◽  
Author(s):  
Kisei Kinoshita ◽  
Akira Minaka ◽  
Hiroyuki Sumiyoshi

2013 ◽  
Vol 777 (1) ◽  
pp. L18 ◽  
Author(s):  
Y. T. Tanaka ◽  
C. C. Cheung ◽  
Y. Inoue ◽  
Ł. Stawarz ◽  
M. Ajello ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document