scholarly journals Advanced Control And Development of Hydro and Diesel Generator Hybrid Power System Models for Renewable Energy Microgrids

2021 ◽  
Vol 2 (3) ◽  
pp. 16-32
Author(s):  
Oshin Ola Austin

The Nigerian power problem resulted to incessant and erratic supply of electricity and this has destroyed many industrial processes in the country. It has reduced productivity and has increased unemployment rate in the country to over 50million (this figure is over 70% of Nigerian youths). This has led many of the youths in the country to crime. It has led to the deaths of many innocent people in the country. As of 2016, the electricity energy consumption in the world from the world fact book revealed that the average power per capita (watts per person) in the United States is 1,377 Watts. In Canada, it is 1704 Watts per person and in South Africa; it is 445 Watts per person and in Australia, average power per capita (watts per person) is as high as 1,112 Watts. Whereas, the average electricity consumed in watts per person in Nigeria is just 14 Watts.  Unfortunately, this has put the country in a rank of 189 out of 219 countries estimated. In this research work, a Hybrid Electric Power System (HEPS) which comprises Hydro Electric Power Plant (HEPP) and Diesel Generator (DG) was modelled and a control algorithm was established to improve the performance of the system. Hybrid power system mathematical and Simulink models were developed. The output power of the developed Simulink model was be optimized using optimum power point optimization techniques and control algorithms. Simulink models of the two components of the Hybrid Electric Power System were produced using MATLAB/Simulink software. The develop Simulink models was interconnected and final model was developed. The results obtained revealed that the problems associated with conventional methods of power generation was overcomed by the development of this renewable and non-renewable energy resources Hybrid Electric Power System (HEPS) models.

Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2862
Author(s):  
Mika Korkeakoski

Renewable Energy Sources (RES) have become increasingly desirable worldwide in the fight against global climate change. The sharp decrease in costs of especially wind and solar photovoltaics (PV) have created opportunities to move from dependency on conventional fossil fuel-based electricity production towards renewable energy sources. Renewables experience around 7% (in 2018) annual growth rate in the electricity production globally and the pace is expected to further increase in the near future. Cuba is no exception in this regard, the government has set an ambitious renewable energy target of 24% RES of electricity production by the year 2030. The article analyses renewable energy trajectories in Isla de la Juventud, Cuba, through different future energy scenarios utilizing EnergyPLAN tool. The goal is to identify the best fit and least cost options in transitioning towards 100% electric power systemin Isla de la Juventud, Cuba. The work is divided into analysis of (1) technical possibilities for five scenarios in the electricity production with a 40% increase of electricity consumption by 2030: Business As Usual (BAU 2030, with the current electric power system (EPS) setup), VISION 2030 (according to the Cuban government plan with 24% RES), Advanced Renewables (ARES, with 50% RES), High Renewables (HiRES, with 70% RES), and Fully Renewables (FullRES, with 100% RES based electricity system) scenarios and (2) defining least cost options for the five scenarios in Isla de la Juventud, Cuba. The results show that high penetration of renewables is technically possible even up to 100% RES although the best technological fit versus least cost options may not favor the 100% RES based systems with the current electric power system (EPS) setup. This is due to realities in access to resources, especially importation of state of the art technological equipment and biofuels, financial and investment resources, as well as the high costs of storage systems. The analysis shows the Cuban government vision of reaching 24% of RES in the electricity production by 2030 can be exceeded even up to 70% RES based systems with similar or even lower costs in the near future in Isla de la Juventud. However, overcoming critical challenges in the economic, political, and legal conditions are crucially important; how will the implementation of huge national capital investments and significant involvement of Foreign Direct Investments (FDI) actualize to support achievement of the Cuban government’s 2030 vision?


2019 ◽  
Vol 91 (2) ◽  
pp. 353-365 ◽  
Author(s):  
Teresa Donateo ◽  
Roberto Totaro

Purpose The purpose of this paper is to analyze real-world flight data of a piston engine training aircraft collected from an internet-based radar service, along with wind data provided by a weather forecast model, and to use such data to design a hybrid electric power system. Design/methodology/approach The modeling strategy starts from the power demand imposed by a real-world wind-corrected flight profile, where speed and altitude are provided as functions of time, and goes through the calculation of the efficiency of the powertrain components when they meet such demand. Each component of the power system and, in particular, the engine and the propeller, is simulated as a black box with an efficiency depending on the actual working conditions. In the case of hybrid electric power system, the battery charging and discharging processes are simulated with the Shepherd model. Findings The variability of power demand and fuel consumption for a training aircraft is analyzed by applying the proposed methodology to the Piper PA-28-180 Cherokee, a very popular aircraft used for flight training, air taxi and personal use. The potentiality of hybridization is assessed by analyzing the usage of the engine over more than 90 flights. A tentative sizing of a hybrid electric power system is also proposed. It guarantees a fuel saving of about 5%. Originality/value The scientific contribution and the novelty of the investigation are related to the modeling methodology, which takes into account real-world flight conditions, and the application of hybridization to a training aircraft.


2017 ◽  
pp. 1438-1460 ◽  
Author(s):  
Vincent Anayochukwu Ani

Telecommunications industry requires efficient, reliable and cost-effective hybrid power system as alternative to the power supplied by diesel generator. This paper proposed an operational control algorithm that will be used to control and supervise the operations of PV/Wind-Diesel hybrid power generation system for GSM base station sites. The control algorithm was developed in such a way that it coordinates when power should be generated by renewable energy (PV panels and Wind turbine) and when it should be generated by diesel generator and is intended to maximize the use of renewable system while limiting the use of diesel generator. Diesel generator is allocated only when the demand cannot be met by the renewable energy sources including battery bank. The developed algorithm was used to study the operations of the hybrid PV/Wind-Diesel energy system. The control simulation shows that the developed algorithm reduces the operational hours of the diesel generator thereby reducing the running cost of the hybrid energy system as well as the pollutant emissions. With the data collected from the site, a detailed economic and environmental analysis was carried out using micro power optimization software homer. The study evaluates savings associated with conversion of the diesel powered system to a PV/Wind-Diesel hybrid power system.


2018 ◽  
Vol 10 (11) ◽  
pp. 4140 ◽  
Author(s):  
Seungchan Oh ◽  
Heewon Shin ◽  
Hwanhee Cho ◽  
Byongjun Lee

Efforts to reduce greenhouse gas emissions constitute a worldwide trend. According to this trend, there are many plans in place for the replacement of conventional electric power plants operating using fossil fuels with renewable energy sources (RESs). Owing to current needs to expand the RES penetration in accordance to a new National power system plan, the importance of RESs is increasing. The RES penetration imposes various impacts on the power system, including transient stability. Furthermore, the fact that they are distributed at multiple locations in the power system is also a factor which makes the transient impact analysis of RESs difficult. In this study, the transient impacts attributed to the penetration of RESs are analyzed and compared with the conventional Korean electric power system. To confirm the impact of the penetration of RESs on transient stability, the effect was analyzed based on a single machine equivalent (SIME) configuration. Simulations were conducted in accordance to the Korean power system by considering the anticipated RES penetration in 2030. The impact of RES on transient stability was provided by a change in CCT by increasing of the RES penetration.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 418 ◽  
Author(s):  
Gangjun Gong ◽  
Zhening Zhang ◽  
Xinyu Zhang ◽  
Nawaraj Kumar Mahato ◽  
Lin Liu ◽  
...  

With the integration of highly permeable renewable energy to the grid at different levels (transmission, distribution and grid-connected), the volatility on both sides (source side and load side) leading to bidirectional power flow in the power grid complicates the control mechanism. In order to ensure the real-time power balance, energy exchange, higher energy utilization efficiency and stability maintenance in the electric power system, this paper proposes an integrated application of blockchain technology on energy routers at transmission and distribution networks with increased renewable energy penetration. This paper focuses on the safe and stable operation of a highly penetrated renewable energy grid-connected power system and its operation. It also demonstrates a blockchain-based negotiation model with weakly centralized scenarios for “source-network-load” collaborative scheduling operations; secondly, the QoS (quality of service) index of energy flow control and energy router node doubly-fed stability control model were designed. Further, it also introduces the MOPSO (multi-objective particle swarm optimization) algorithm for power output optimization of multienergy power generation; Thirdly, based on the blockchain underlying architecture and load prediction value constraints, this paper puts forward the optimization mechanism and control flow of autonomous energy coordination of b2u (bottom-up) between router nodes of transmission and distribution network based on blockchain.


2016 ◽  
Vol 5 ◽  
pp. 113-119 ◽  
Author(s):  
Editha Kötter ◽  
Ludwig Schneider ◽  
Frank Sehnke ◽  
Kay Ohnmeiss ◽  
Ramona Schröer

Energies ◽  
2019 ◽  
Vol 12 (13) ◽  
pp. 2472 ◽  
Author(s):  
Changyu Zhou ◽  
Guohe Huang ◽  
Jiapei Chen

In this study, a type-2 fuzzy chance-constrained fractional integrated programming (T2FCFP) approach is developed for the planning of sustainable management in an electric power system (EPS) under complex uncertainties. Through simultaneously coupling mixed-integer linear programming (MILP), chance-constrained stochastic programming (CCSP), and type-2 fuzzy mathematical programming (T2FMP) techniques into a fractional programming (FP) framework, T2FCFP can tackle dual objective problems of uncertain parameters with both type-2 fuzzy characteristics and stochastic effectively and enhance the robustness of the obtained decisions. T2FCFP has been applied to a case study of a typical electric power system planning to demonstrate these advantages, where issues of clean energy utilization, air-pollutant emissions mitigation, mix ratio of renewable energy power generation in the entire energy supply, and the displacement efficiency of electricity generation technologies by renewable energy are incorporated within the modeling formulation. The suggested optimal alternative that can produce the desirable sustainable schemes with a maximized share of clean energy power generation has been generated. The results obtained can be used to conduct desired energy/electricity allocation and help decision-makers make suitable decisions under different input scenarios.


Sign in / Sign up

Export Citation Format

Share Document