scholarly journals A Sharp Existence and Uniqueness Theorem for Linear Fuchsian Partial Differential Equations

2001 ◽  
Vol 24 (2) ◽  
pp. 477-486 ◽  
Author(s):  
Jose Ernie C. LOPE
Author(s):  
FULVIA CONFORTOLA

We prove an existence and uniqueness result for a class of backward stochastic differential equations (BSDE) with dissipative drift in Hilbert spaces. We also give examples of stochastic partial differential equations which can be solved with our result.


2021 ◽  
Vol 2021 ◽  
pp. 1-6
Author(s):  
Atimad Harir ◽  
Said Melliani ◽  
Lalla Saadia Chadli

In this study, fuzzy conformable fractional differential equations are investigated. We study conformable fractional differentiability, and we define fractional integrability properties of such functions and give an existence and uniqueness theorem for a solution to a fuzzy fractional differential equation by using the concept of conformable differentiability. This concept is based on the enlargement of the class of differentiable fuzzy mappings; for this, we consider the lateral Hukuhara derivatives of order q ∈ 0,1 .


2009 ◽  
Vol 42 (2) ◽  
Author(s):  
Wen-rong Li ◽  
Sui Sun Cheng

AbstractA Picard type existence and uniqueness theorem is established for iterative differential equations of the form


1999 ◽  
Vol 22 (2) ◽  
pp. 271-279 ◽  
Author(s):  
Jong Yeoul Park ◽  
Hyo Keun Han

By using the method of successive approximation, we prove the existence and uniqueness of a solution of the fuzzy differential equationx′(t)=f(t,x(t)),x(t0)=x0. We also consider anϵ-approximate solution of the above fuzzy differential equation.


2011 ◽  
Vol 2011 ◽  
pp. 1-12
Author(s):  
Guixin Hu ◽  
Ke Wang

We introduce a new kind of equation, stochastic differential equations with self-exciting switching. Firstly, we give some preliminaries for this kind of equation, and then, we get the main results of our paper; that is, we gave the sufficient condition which can guarantee the existence and uniqueness of the solution.


Author(s):  
B. P. W. Fernando ◽  
S. S. Sritharan

In this paper we consider a stochastic counterpart of Tosio Kato's quasi-linear partial differential equations and prove the existence and uniqueness of mild solutions.


Sign in / Sign up

Export Citation Format

Share Document