DYNAMICS OF MULTISECTION SEMICONDUCTOR LASERS

2005 ◽  
Vol 9 (1) ◽  
pp. 51-66 ◽  
Author(s):  
J. Sieber ◽  
M. Radžiūnas ◽  
K. R. Schneider

We investigate the longitudinal dynamics of multisection semiconductor lasers based on a model, where a hyperbolic system of partial differential equations is nonlinearly coupled with a system of ordinary differential equations. We present analytic results for that system: global existence and uniqueness of the initial‐boundary value problem, and existence of attracting invariant manifolds of low dimension. The flow on these manifolds is approximately described by the so‐called mode approximations which are systems of ordinary differential equations. Finally, we present a detailed numerical bifurcation analysis of the two-mode approximation system and compare it with the simulated dynamics of the full PDE model.

2021 ◽  
Vol 83 (2) ◽  
pp. 151-159
Author(s):  
E.A. Korovaytseva

Results of hyperelastic soft shells nonlinear axisymmetric dynamic deforming problems solution algorithm testing are represented in the work. Equations of motion are given in vector-matrix form. For the nonlinear initial-boundary value problem solution an algorithm which lies in reduction of the system of partial differential equations of motion to the system of ordinary differential equations with the help of lines method is developed. At this finite-difference approximation of partial time derivatives is used. The system of ordinary differential equations obtained as a result of this approximation is solved using parameter differentiation method at each time step. The algorithm testing results are represented for the case of pressure uniformly distributed along the meridian of the shell and linearly increasing in time. Three types of elastic potential characterizing shell material are considered: Neo-hookean, Mooney – Rivlin and Yeoh. Features of numerical realization of the algorithm used are pointed out. These features are connected both with the properties of soft shells deforming equations system and with the features of the algorithm itself. The results are compared with analytical solution of the problem considered. Solution behavior at critical pressure value is investigated. Formulations and conclusions given in analytical studies of the problem are clarified. Applicability of the used algorithm to solution of the problems of soft shells dynamic deforming in the range of displacements several times greater than initial dimensions of the shell and deformations much greater than unity is shown. The numerical solution of the initial boundary value problem of nonstationary dynamic deformation of the soft shell is obtained without assumptions about the limitation of displacements and deformations. The results of the calculations are in good agreement with the results of analytical studies of the test problem.


2017 ◽  
Vol 22 (4) ◽  
pp. 425-440
Author(s):  
Harijs Kalis ◽  
Andris Buikis ◽  
Aivars Aboltins ◽  
Ilmars Kangro

In this paper we study the problem of the diffusion of one substance through the pores of a porous multi layered material which may absorb and immobilize some of the diffusing substances with the evolution or absorption of heat. As an example we consider circular cross section wood-block with two layers in the radial direction. We consider the transfer of heat process. We derive the system of two partial differential equations (PDEs) - one expressing the rate of change of concentration of water vapour in the air spaces and the other - the rate of change of temperature in every layer. The approximation of corresponding initial boundary value problem of the system of PDEs is based on the conservative averaging method (CAM) with special integral splines. This procedure allows reduce the 3-D axis-symmetrical transfer problem in multi-layered domain described by a system of PDEs to initial value problem for a system of ordinary differential equations (ODEs) of the first order.


Author(s):  
Ērika Teirumnieka ◽  
Ilmārs Kangro ◽  
Edmunds Teirumnieks ◽  
Harijs Kalis

<p>In this paper we consider averaging methods for solving the 3-D boundary value problem in domain containing 2 layers of the peat block. We consider the metal concentration in the peat blocks. Using experimental data the mathematical model for calculation of concentration of metal in different points in every peat layer is developed. A specific feature of these problems is that it is necessary to solve the 3-D boundary-value problems for elliptic type partial differential equations of second order with piece-wise diffusion coefficients in every direction and peat layers.</p><p>The special parabolic and exponential spline, which interpolation middle integral values of piece-wise smooth function, are considered. With the help of this splines is reduce the problems of mathematical physics in 3-D with piece-wise coefficients to respect one coordinate to problems for system of equations in 2-D. This procedure allows reduce the 3-D problem to a problem of 2-D and 1-D problems and the solution of the approximated problem is obtained analytically.</p><p>The solution of corresponding averaged 2-D initial-boundary value problem is obtained also numerically, using for approach differential equations the discretization in space applying the central differences. The approximation of the 2-D non-stationary problem is based on the implicit finite-difference and alternating direction (ADI) methods. The numerical solution is compared with the analytical solution.</p>


Author(s):  
Ilmārs Kangro ◽  
Harijs Kalis ◽  
Ērika Teirumnieka ◽  
Edmunds Teirumnieks

In this paper we study diffusion and convection filtration problem of one substance through the pores of a porous material which may absorb and immobilize some of the diffusing substances. As an example we consider round cylinder with filtration process in the axial direction. The cylinder is filled with sorbent i.e. absorbent material that passed through dirty water or liquid solutions. We can derive the system of two partial differential equations (PDEs). One equation is expressing the rate of change of concentration of water in the pores of the sorbent and the other - the rate of change of concentration in the sorbent or kinetically equation for absorption. The approximation of corresponding initial boundary value problem of the system of PDEs is based on the conservative averaging method (CAM). This procedure allows reducing the 2-D axis-symmetrical mass transfer problem described by a system of PDEs to initial value problem for a system of ordinary differential equations (ODEs) of the first order.


2020 ◽  
Vol 100 (4) ◽  
pp. 5-16
Author(s):  
A.T. Assanova ◽  
◽  
Zh.S. Tokmurzin ◽  

A semi-periodic initial boundary-value problem for a fourth-order system of partial differential equations is considered. Using the method of functional parametrization, an additional parameter is carried out and the studied problem is reduced to the equivalent semi-periodic problem for a system of integro-differential equations of hyperbolic type second order with functional parameters and integral relations. An interrelation between the semi-periodic problem for the system of integro-differential equations of hyperbolic type and a family of Cauchy problems for a system of ordinary differential equations is established. Algorithms for finding of solutions to an equivalent problem are constructed and their convergence is proved. Sufficient conditions of a unique solvability to the semi-periodic initial boundary value problem for the fourth-order system of partial differential equations are obtained.


Sign in / Sign up

Export Citation Format

Share Document