scholarly journals Investigating the Physical Properties and Fragmentation of the AFGL 333-Ridge

2021 ◽  
Vol 162 (6) ◽  
pp. 239
Author(s):  
Xiaolian Liang ◽  
Jin-Long Xu ◽  
Jun-Jie Wang

Abstract We present multiwavelength data to investigate the physical properties and fragmentation of AFGL 333-Ridge. A statistical analysis of velocity dispersion indicates that turbulence is the dominant motion in the ridge. However, the linear mass density (1124.0 M ⊙/pc) of AFGL 333-Ridge far exceeds its critical value of 406.5 M ⊙/pc, suggesting that additional motions are required to prevent the filament radial collapse. Using the getsources algorithm, we identified 14 cores from the Herschel maps, including two protostellar cores and 12 starless cores. All of these starless cores are gravitationally bound, and are therefore considered to be prestellar cores. Based on their radius-mass relation, 11 of 14 cores have the potential to form massive stars. Moreover, the seven cores in two subfilaments of AFGL 333-Ridge seem to constitute two necklace-like chains with a spacing length of 0.51 and 0.45 pc, respectively. Compared the spacing length with theoretical prediction lengths by Jeans and cylindrical fragmentations, we argued that the combination of turbulence and thermal pressure may lead to the fragmentation of the two subfilaments into the cores.

Materials ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2551
Author(s):  
Wojciech Kajzer ◽  
Janusz Szewczenko ◽  
Anita Kajzer ◽  
Marcin Basiaga ◽  
Joanna Jaworska ◽  
...  

In this study, we aimed to determine the effect of long-term exposure to artificial urine on the physical properties of CoCrMo alloy with biodegradable heparin-releasing polymeric coatings. Variants of polymer coatings of poly(L,L-lactide-ɛ-caprolactone) (P(L,L-L/CL)) and poly(D,L-lactide-ɛ-caprolactone) (P(D,L-L/CL)) constituting the base for heparin-releasing (HEP) polyvinyl alcohol (PVA) coatings were analyzed. The coatings were applied by the dip-coating method. Heparin was used to counteract the incrustation process in the artificial urine. The study included tests of wettability, resistance to pitting and crevice corrosion, determination of the mass density of metal ions penetrating into the artificial urine, and the kinetics of heparin release. In addition, microscopic observations of surface roughness and adhesion to the metal substrate were performed. Electrolytically polished CoCrMo samples (as a reference level) and samples with polymer coatings were used for the tests. The tests were conducted on samples in the initial state and after 30, 60, and 90 days of exposure to artificial urine. The analysis of the test results shows that the polymer coatings contribute by improving the resistance of the metal substrate to pitting and crevice corrosion in the initial state and reducing (as compared with the metal substrate) the mass density of metal ion release into the artificial urine. Moreover, the PVA + HEP coating, regardless of the base polymer coatings used, contributes to a reduction in the incrustation process in the first 30 days of exposure to the artificial urine.


2018 ◽  
Vol 618 ◽  
pp. A53 ◽  
Author(s):  
Ronin Wu ◽  
Emeric Bron ◽  
Takashi Onaka ◽  
Franck Le Petit ◽  
Frédéric Galliano ◽  
...  

We investigate the physical conditions of the CO gas, based on the submillimeter imaging spectroscopy from a 2′ × 7′ (1.5 × 5 pc2) area near the young star cluster, Trumpler 14 of the Carina Nebula. The observations presented in this work are taken with the Fourier Transform Spectrometer (FTS) of the Spectral and Photometric Imaging REceiver (SPIRE) onboard the Herschel Space Observatory. The newly observed spectral lines include [CI] 370 μm [CI] 609 μm, and CO transitions from J = 4−3 to J = 13−12. Our field of view covers the edge of a cavity carved by Trumpler 14 about 1 Myr ago and marks the transition from H ii regions to photo-dissociation regions. The observed CO intensities are the most prominent at the northwest region, Car I-E. With the state-of-the-art Meudon PDR code, we successfully derive the physical conditions, which include the thermal pressure (P) and the scaling factor of radiation fields (GUV), from the observed CO spectral line energy distributions (SLEDs) in the observed region. The derived GUV values generally show excellent agreement with the UV radiation fields created by nearby OB-stars and thus confirm that the main excitation source of the observed CO emission is the UV-photons provided by the massive stars. The derived thermal pressure is in the range 0.5−3 × 108 K cm-3 with the highest values found along the ionization front in Car I-E region facing Trumpler 14, hinting that the cloud structure is similar to the recent observations of the Orion Bar. We also note a discrepancy at a local position (<0.17 × 0.17 pc2) between the photo-dissociation region (PDR) modeling result and the UV radiation fields estimated from nearby massive stars, which requires further investigation on nearby objects that could contribute to local heating, including outflow. Comparing the derived thermal pressure with the radiation fields, we report the first observationally derived and spatially resolved P ~ 2 × 104 GUV relationship. As direct comparisons of the modeling results to the observed 13CO, [O I] 63 μm, and [C II] 158 μm intensities are not straightforward, we urge the reader to be cautious when constraining the physical conditions of PDRs with combinations of 12CO, 13CO, [C I], [O I] 63 μm, and [C II] 158 μm observations.


Author(s):  
E. Amah ◽  
N. Musunuri ◽  
Ian S. Fischer ◽  
Pushpendra Singh

We numerically study the process of self-assembly of particle mixtures on fluid-liquid interfaces when an electric field is applied in the direction normal to the interface. The force law for the dependence of the electric field induced dipole-dipole and capillary forces on the distance between the particles and their physical properties obtained in an earlier study by performing direct numerical simulations is used for conducting simulations. The inter-particle forces cause mixtures of nanoparticles to self-assemble into molecular-like hierarchical arrangements consisting of composite particles which are organized in a pattern. However, there is a critical electric intensity value below which particles move under the influence of Brownian forces and do not self-assemble. Above the critical value, when the particles sizes differed by a factor of two or more, the composite particle has a larger particle at its core and several smaller particles forming a ring around it. Approximately same sized particles, when their concentrations are approximately equal, form binary particles or chains (analogous to polymeric molecules) in which positively and negatively polarized particles alternate, but when their concentrations differ the particles whose concentration is larger form rings around the particles with smaller concentration.


2016 ◽  
Vol 12 (S323) ◽  
pp. 284-287
Author(s):  
S. Aniyan ◽  
K. C. Freeman ◽  
M. Arnaboldi ◽  
O. Gerhard ◽  
L. Coccato ◽  
...  

AbstractThe decomposition of the 21 cm rotation curve of galaxies into contribution from the disk and dark halo depends on the adopted mass to light ratio (M/L) of the disk. Given the vertical velocity dispersion (σz) of stars in the disk and its scale height (hz), the disk surface density and hence the M/L can be estimated. Earlier works have used this technique to conclude that galaxy disks are submaximal. Here we address an important conceptual problem: star-forming spirals have an old (kinematically hot) disk population and a young cold disk population. Both of these populations contribute to the integrated light spectra from which σz is measured. The measured scale height hz is for the old disk population. In the Jeans equation, σz and hz must pertain to the same population. We have developed techniques to extract the velocity dispersion of the old disk from integrated light spectra and from samples of planetary nebulae. We present the analysis of the disk kinematics of the galaxy NGC 628 using IFU data in the inner regions and planetary nebulae as tracers in the outer regions of the disk. We demonstrate that using the scale height of the old thin disk with the vertical velocity dispersion of the same population, traced by PNe, results in a maximal disk for NGC 628. Our analysis concludes that previous studies underestimate the disk surface mass density by ~ 2, sufficient to make a maximal disk for NGC 628 appear like a submaximal disk.


2010 ◽  
Vol 6 (S270) ◽  
pp. 57-64
Author(s):  
Ian A. Bonnell ◽  
Rowan J Smith

AbstractThere has been considerable progress in our understanding of how massive stars form but still much confusion as to why they form. Recent work from several sources has shown that the formation of massive stars through disc accretion, possibly aided by gravitational and Rayleigh-Taylor instabilities is a viable mechanism. Stellar mergers, on the other hand, are unlikely to occur in any but the most massive clusters and hence should not be a primary avenue for massive star formation. In contrast to this success, we are still uncertain as to how the mass that forms a massive star is accumulated. there are two possible mechanisms including the collapse of massive prestellar cores and competitive accretion in clusters. At present, there are theoretical and observational question marks as to the existence of high-mass prestellar cores. theoretically, such objects should fragment before they can attain a relaxed, centrally condensed and high-mass state necessary to form massive stars. Numerical simulations including cluster formation, feedback and magnetic fields have not found such objects but instead point to the continued accretion in a cluster potential as the primary mechanism to form high-mass stars. Feedback and magnetic fields act to slow the star formation process and will reduce the efficiencies from a purely dynamical collapse but otherwise appear to not significantly alter the process.


2008 ◽  
Vol 4 (S256) ◽  
pp. 325-336
Author(s):  
Christopher J. Evans

AbstractThe past decade has witnessed impressive progress in our understanding of the physical properties of massive stars in the Magellanic Clouds, and how they compare to their cousins in the Galaxy. I summarise new results in this field, including evidence for reduced mass-loss rates and faster stellar rotational velocities in the Clouds, and their present-day compositions. I also discuss the stellar temperature scale, emphasizing its dependence on metallicity across the entire upper-part of the Hertzsprung-Russell diagram.


2017 ◽  
Vol 13 (S334) ◽  
pp. 304-305
Author(s):  
Jorrit H. J. Hagen ◽  
Amina Helmi

AbstractWe investigate the kinematics of red clump stars in the Solar neighbourhood by combining data from the RAVE survey with the TGAS dataset presented in Gaia DR1. Our goal is to put new constraints on the (local) distribution of mass using the Jeans Equations. Here we show the variation of the vertical velocity dispersion as function of height above the mid-plane for both a thin and a thick disk tracer sample and present preliminary results.


Author(s):  
Malcolm Walmsley ◽  
Paola Caselli ◽  
Antonio Zucconi ◽  
Daniele Galli

1988 ◽  
Vol 126 ◽  
pp. 691-692
Author(s):  
Herwig Dejonghe

A 1-parameter family of anisotropic models is presented. They all satisfy the Plummer law in the mass density, but have different velocity dispersions. Moreover, the stars are not confined to a particular subset of the total accessible phase space. This family is mathematically simple enough to be explored analytically in detail. The family is rich enough though to allow for a 3-parameter generalization which illustrates that even when both the mass density and the velocity dispersion profiles are required to be the same, a degeneracy in the possible distribution functions persists. The observational consequences of the degeneracy can be studied by calculating the observable radial velocity line profiles obtained with different distribution functions. It turns out that line profiles are relatively sensitive to changes in the distribution function. They therefore can be considered to be more natural observables when a determination of the distribution function is desired.


2020 ◽  
Vol 495 (1) ◽  
pp. 1172-1187
Author(s):  
Ross Dempsey ◽  
Nadia L Zakamska ◽  
James E Owen

ABSTRACT ‘Orion fingers’ are a system of dozens of bow shocks, with the wings of shocks pointing to a common system of origin, which is centred on a dynamically disintegrating system of several massive stars. The shock heads propagate with velocities of up to 300–400 km s−1, but the formation and physical properties of the ‘bullets’ leading the shocks are not known. Here, we summarize two possible scenarios for the formation of the ‘bullets’ and the resulting bow shocks (‘fingers’). In the first scenario, bullets are self-gravitating, Jupiter-mass objects that were formed rapidly and then ejected during the strong dynamical interactions of massive stars and their discs. This scenario naturally explains the similar time-scales for the outflow of bullets and for the dynamical interaction of the massive stars, but has some difficulty explaining the observed high velocities of the bullets. In the second scenario, bullets are formed via hydrodynamic instabilities in a massive, infrared-driven wind, naturally explaining the high velocities and the morphology of outflow, but the bullets are not required to be self-gravitating. The processes that created the Orion fingers are likely not unique to this particular star-forming region and may result in free-floating, high-velocity, core-less planets.


Sign in / Sign up

Export Citation Format

Share Document