scholarly journals The Green Bank Northern Celestial Cap Pulsar Survey. VI. Discovery and Timing of PSR J1759+5036: A Double Neutron Star Binary Pulsar

2021 ◽  
Vol 922 (1) ◽  
pp. 35
Author(s):  
G. Y. Agazie ◽  
M. G. Mingyar ◽  
M. A. McLaughlin ◽  
J. K. Swiggum ◽  
D. L. Kaplan ◽  
...  

Abstract The Green Bank North Celestial Cap survey is a 350 MHz all-sky survey for pulsars and fast radio transients using the Robert C. Byrd Green Bank Telescope. To date, the survey has discovered over 190 pulsars, including 33 millisecond pulsars and 24 rotating radio transients. Several exotic pulsars have been discovered in the survey, including PSR J1759+5036, a binary pulsar with a 176 ms spin period in an orbit with a period of 2.04 days, an eccentricity of 0.3, and a projected semi-major axis of 6.8 light seconds. Using seven years of timing data, we are able to measure one post–Keplerian parameter, advance of periastron, which has allowed us to constrain the total system mass to 2.62 ± 0.03 M ⊙. This constraint, along with the spin period and orbital parameters, suggests that this is a double neutron star system, although we cannot entirely rule out a pulsar-white dwarf binary. This pulsar is only detectable in roughly 45% of observations, most likely due to scintillation. However, additional observations are required to determine whether there may be other contributing effects.

2004 ◽  
Vol 218 ◽  
pp. 429-430
Author(s):  
N. Wang ◽  
S. Johnston ◽  
R. N. Manchester

This paper summarizes the results of 13 years of timing observations of a unique binary pulsar, B1259–63, which has a massive B2e star companion. A small glitch in the pulsar period apparently occurred in 1997 Aug, not long after the 1997 periastron. We found that spin-orbit coupling with secular changes in periastron longitude and projected semi-major axis cannot account for the observed period variations. A model in which step changes in pulsar orbital parameters occur at each periastron accounts best for the observed timing behavior.


Author(s):  
Gloria Guilluy ◽  
Alessandro Sozzetti ◽  
Paolo Giacobbe ◽  
Aldo S. Bonomo ◽  
Giuseppina Micela

AbstractSince the first discovery of an extra-solar planet around a main-sequence star, in 1995, the number of detected exoplanets has increased enormously. Over the past two decades, observational instruments (both onboard and on ground-based facilities) have revealed an astonishing diversity in planetary physical features (i. e. mass and radius), and orbital parameters (e.g. period, semi-major axis, inclination). Exoplanetary atmospheres provide direct clues to understand the origin of these differences through their observable spectral imprints. In the near future, upcoming ground and space-based telescopes will shift the focus of exoplanetary science from an era of “species discovery” to one of “atmospheric characterization”. In this context, the Atmospheric Remote-sensing Infrared Exoplanet Large (Ariel) survey, will play a key role. As it is designed to observe and characterize a large and diverse sample of exoplanets, Ariel will provide constraints on a wide gamut of atmospheric properties allowing us to extract much more information than has been possible so far (e.g. insights into the planetary formation and evolution processes). The low resolution spectra obtained with Ariel will probe layers different from those observed by ground-based high resolution spectroscopy, therefore the synergy between these two techniques offers a unique opportunity to understanding the physics of planetary atmospheres. In this paper, we set the basis for building up a framework to effectively utilise, at near-infrared wavelengths, high-resolution datasets (analyzed via the cross-correlation technique) with spectral retrieval analyses based on Ariel low-resolution spectroscopy. We show preliminary results, using a benchmark object, namely HD 209458 b, addressing the possibility of providing improved constraints on the temperature structure and molecular/atomic abundances.


Author(s):  
R O Brown ◽  
M J Coe ◽  
W C G Ho ◽  
A T Okazaki

Abstract As the largest population of high mass X-ray binaries, Be/X-ray binaries provide an excellent laboratory to investigate the extreme physics of neutron stars. It is generally accepted that Be stars possess a circumstellar disc, providing an additional source of accretion to the stellar winds present around young hot stars. Interaction between the neutron star and the disc is often the dominant accretion mechanism. A large amount of work has gone into modelling the properties of these circumstellar discs, allowing for the explanation of a number of observable phenomena. In this paper, smoothed particle hydroynamics simulations are performed whilst varying the model parameters (orbital period, eccentricity, the mass ejection rate of the Be star and the viscosity and orientation of the disc). The relationships between the model parameters and the disc’s characteristics (base gas density, the accretion rate of the neutron star and the disc’s size) are presented. The observational evidence for a dependency of the size of the Be star’s circumstellar disc on the orbital period (and semi-major axis) is supported by the simulations.


2018 ◽  
Vol 615 ◽  
pp. A90 ◽  
Author(s):  
J. M. Almenara ◽  
R. F. Díaz ◽  
G. Hébrard ◽  
R. Mardling ◽  
C. Damiani ◽  
...  

Kepler-419 is a planetary system discovered by the Kepler photometry which is known to harbour two massive giant planets: an inner 3 MJ transiting planet with a 69.8-day period, highly eccentric orbit, and an outer 7.5 MJ non-transiting planet predicted from the transit-timing variations (TTVs) of the inner planet b to have a 675-day period, moderately eccentric orbit. Here we present new radial velocity (RV) measurements secured over more than two years with the SOPHIE spectrograph, where both planets are clearly detected. The RV data is modelled together with the Kepler photometry using a photodynamical model. The inclusion of velocity information breaks the MR−3 degeneracy inherent in timing data alone, allowing us to measure the absolute stellar and planetary radii and masses. With uncertainties of 12 and 13% for the stellar and inner planet radii, and 35, 24, and 35% for the masses of the star, planet b, and planet c, respectively, these measurements are the most precise to date for a single host star system using this technique. The transiting planet mass is determined at better precision than the star mass. This shows that modelling the radial velocities and the light curve together in systems of dynamically interacting planets provides a way of characterising both the star and the planets without being limited by knowledge of the star. On the other hand, the period ratio and eccentricities place the Kepler-419 system in a sweet spot; had around twice as many transits been observed, the mass of the transiting planet could have been measured using its own TTVs. Finally, the origin of the Kepler-419 system is discussed. We show that the system is near a coplanar high-eccentricity secular fixed point, related to the alignment of the orbits, which has prevented the inner orbit from circularising. For most other relative apsidal orientations, planet b’s orbit would be circular with a semi-major axis of 0.03 au. This suggests a mechanism for forming hot Jupiters in multiplanetary systems without the need of high mutual inclinations.


2020 ◽  
Vol 24 (1) ◽  
pp. 56-60
Author(s):  
Mohamed R. Amin

AbstractThe focus of this paper is the design of a self-maintenance orbit using two natural forces against each other. The effect of perturbations due to Earth's oblateness up to the third order on both the semi-major axis and eccentricity for a low Earth orbit satellite together with the perturbation due to air drag on the same orbital parameters were used, in order to create self-maintenance orbits. Numerical results were simulated for a low earth orbit satellite, which substantiates the applicability of the results.


1996 ◽  
Vol 160 ◽  
pp. 525-530 ◽  
Author(s):  
Z. Arzoumanian ◽  
K. Joshi ◽  
F. A. Rasio ◽  
S. E. Thorsett

AbstractPrevious timing data for PSR B1620–26 were consistent with a second companion mass m2anywhere in the range ∼ 10−3– 1M⊙, i.e., from a Jupiter-type planet to a star. We present the latest timing parameters for the system, including a significant change in the projected semi-major axis of the inner binary, a marginal detection of the fourth time derivative of the pulse frequency, and the pulsar proper motion (which is in agreement with published values for the proper motion of M4), and use them to further constrain the mass m2and the orbital parameters. Using the observed value of, we obtain a one-parameter family of solutions, all with m2≲ 10−2M⊙, i.e., excluding stellar masses. Varyingwithin its formal 1σ error bar does not affect the mass range significantly. However, if we varywithin a 4σ error bar, we find that stellar-mass solutions are still possible. We also calculate the predicted rate of change of the projected semi-major axis of the inner binary and show that it agrees with the measured value.


2001 ◽  
Vol 205 ◽  
pp. 408-409
Author(s):  
I.H. Stairs ◽  
S.E. Thorsett ◽  
J.H. Taylor ◽  
Z. Arzoumanian

We present the results of recent Arecibo observations of the relativistic double-neutron-star binary PSR B1534+12. The timing solution includes measurements of five post-Keplerian orbital parameters, whose values agree well with the predictions of general relativity. The observations show that the pulse profile is evolving secularly at both 1400 MHz and 430 MHz. This effect is similar to that seen in PSR B1913+16, and is almost certainly due to general relativistic precession of the pulsar's spin axis. We also present high-quality polarimetric profiles at both observing frequencies.


1980 ◽  
Vol 88 ◽  
pp. 511-515
Author(s):  
Kyoji Nariai

When there is mass loss from a binary system, the lost mass carries energy and angular momentum out of the system. Therefore, the remaining system must adjust its orbital parameters to the changing values of the total kinematic energy E and the total angular momentum N as the total mass M decreases. The parameters concerned here are : the fractional mass μ, the semi-major axis a, and the eccentricity e.


1985 ◽  
Vol 85 ◽  
pp. 417-420
Author(s):  
P. Barge ◽  
R. Pellat ◽  
J. Millet

AbstractThe scattering of dust grains orbits due to recurrent sectors of the interplanetary magnetic field is reinvestigated with a better formalism. Our method reveals the resonant character of the diffusion and is well suited for the problem. The spreads in the orbital parameters are found less important than believed untill now and to vary rapidly with eccentricity and semi-major axis. Only the small dielectric grains with size less than 0.5 μm may be scattered by the Lorentz force fluctuations; the main diffusion occurs in inclination and near the sun (20-60 R⊙).


2012 ◽  
Vol 27 (12) ◽  
pp. 1250071 ◽  
Author(s):  
L. IORIO

We work out the impact that the recently determined time-dependent component of the Pioneer Anomaly (PA), if interpreted as an additional exotic acceleration of gravitational origin with respect to the well-known PA-like constant one, may have on the orbital motions of some planets of the solar system. By assuming that it points towards the Sun, it turns out that both the semi-major axis a and the eccentricity e of the orbit of a test particle would experience secular variations. For Saturn and Uranus, for which modern data records cover at least one full orbital revolution, such predicted anomalies are up to 2–3 orders of magnitude larger than the present-day accuracies in empirical determinations of their orbital parameters from the usual orbit determination procedures in which the PA was not modeled. Given the predicted huge sizes of such hypothetical signatures, it is unlikely that their absence from the presently available processed data can be attributable to an "absorption" for them in the estimated parameters caused by the fact that they were not explicitly modeled. The magnitude of a constant PA-type acceleration at 9.5 au cannot be larger than 9×10-15 m s-2 according to the latest observational results for the perihelion precession of Saturn.


Sign in / Sign up

Export Citation Format

Share Document