scholarly journals Constraining Cosmic Microwave Background Temperature Evolution With Sunyaev–Zel’Dovich Galaxy Clusters from the Atacama Cosmology Telescope

2021 ◽  
Vol 922 (2) ◽  
pp. 136
Author(s):  
Yunyang Li ◽  
Adam D. Hincks ◽  
Stefania Amodeo ◽  
Elia S. Battistelli ◽  
J. Richard Bond ◽  
...  

Abstract The Sunyaev–Zel’dovich (SZ) effect introduces a specific distortion of the blackbody spectrum of the cosmic microwave background (CMB) radiation when it scatters off hot gas in clusters of galaxies. The frequency dependence of the distortion is only independent of the cluster redshift when the evolution of the CMB radiation is adiabatic. Using 370 clusters within the redshift range 0.07 ≲ z ≲ 1.4 from the largest SZ-selected cluster sample to date from the Atacama Cosmology Telescope, we provide new constraints on the deviation of CMB temperature evolution from the standard model α = 0.017 − 0.032 + 0.029 , where T ( z ) = T 0 1 + z 1 − α . This result is consistent with no deviation from the standard adiabatic model. Combining it with previous, independent data sets we obtain a joint constraint of α = −0.001 ± 0.012. Attributing deviation from adiabaticity to the decay of dark energy, this result constrains its effective equation of state w eff = − 0.998 − 0.010 + 0.008 .

2011 ◽  
Vol 526 ◽  
pp. L7 ◽  
Author(s):  
P. Noterdaeme ◽  
P. Petitjean ◽  
R. Srianand ◽  
C. Ledoux ◽  
S. López

Symmetry ◽  
2018 ◽  
Vol 10 (9) ◽  
pp. 372 ◽  
Author(s):  
Ivan de Martino

Decaying Dark Energy models modify the background evolution of the most common observables, such as the Hubble function, the luminosity distance and the Cosmic Microwave Background temperature–redshift scaling relation. We use the most recent observationally-determined datasets, including Supernovae Type Ia and Gamma Ray Bursts data, along with H ( z ) and Cosmic Microwave Background temperature versus z data and the reduced Cosmic Microwave Background parameters, to improve the previous constraints on these models. We perform a Monte Carlo Markov Chain analysis to constrain the parameter space, on the basis of two distinct methods. In view of the first method, the Hubble constant and the matter density are left to vary freely. In this case, our results are compatible with previous analyses associated with decaying Dark Energy models, as well as with the most recent description of the cosmological background. In view of the second method, we set the Hubble constant and the matter density to their best fit values obtained by the Planck satellite, reducing the parameter space to two dimensions, and improving the existent constraints on the model’s parameters. Our results suggest that the accelerated expansion of the Universe is well described by the cosmological constant, and we argue that forthcoming observations will play a determinant role to constrain/rule out decaying Dark Energy.


2017 ◽  
Vol 597 ◽  
pp. A126 ◽  
Author(s):  
F. Couchot ◽  
S. Henrot-Versillé ◽  
O. Perdereau ◽  
S. Plaszczynski ◽  
B. Rouillé d’Orfeuil ◽  
...  

1992 ◽  
Vol 396 ◽  
pp. 3 ◽  
Author(s):  
S. Levin ◽  
M. Bensadoun ◽  
M. Bersanelli ◽  
G. de Amici ◽  
A. Kogut ◽  
...  

1990 ◽  
Vol 139 ◽  
pp. 390-391
Author(s):  
M. E. Kaiser ◽  
E. L. Wright

We present moderate to high signal-to-noise high-resolution (R ≈ 150,000–170,000) optical spectra toward ζ Oph. Gaussian fits to our data indicate a value of the line-width parameter b, of b = 1.4 ± 0.2 km s−1, along this line of sight. When CN is used as an indirect probe of the cosmic microwave background (CMB) temperature, the line profile is used to determine saturation corrections in the line. This affects column density calculations, which are reflected in the excitation temperature. Current measurements of the b-value along this line of sight range from 0.88 ± 0.02 km s−1 (Crane et al. 1986) to 1.3 ± 0.1 km s−1 (Hegyi, Traub, and Carleton 1972). The extreme range of these b-values yield saturation corrections to the CMB temperature that differ by 0.05 K, which is equal to the quoted precision of current measurements. Preliminary analysis of observations toward HD 29647 indicate that TCMB = 2.70 ± 0.14 K at 2.64 mm toward this line of sight.


Sign in / Sign up

Export Citation Format

Share Document