A DEFT Way to Forecast Solar Flares

2021 ◽  
Vol 922 (2) ◽  
pp. 218
Author(s):  
Larisza D. Krista ◽  
Matthew Chih

Abstract Solar flares have been linked to some of the most significant space weather hazards at Earth. These hazards, including radio blackouts and energetic particle events, can start just minutes after the flare onset. Therefore, it is of great importance to identify and predict flare events. In this paper we introduce the Detection and EUV Flare Tracking (DEFT) tool, which allows us to identify flare signatures and their precursors using high spatial and temporal resolution extreme-ultraviolet (EUV) solar observations. The unique advantage of DEFT is its ability to identify small but significant EUV intensity changes that may lead to solar eruptions. Furthermore, the tool can identify the location of the disturbances and distinguish events occurring at the same time in multiple locations. The algorithm analyzes high temporal cadence observations obtained from the Solar Ultraviolet Imager instrument aboard the GOES-R satellite. In a study of 61 flares of various magnitudes observed in 2017, the “main” EUV flare signatures (those closest in time to the X-ray start time) were identified on average 6 minutes early. The “precursor” EUV signatures (second-closest EUV signatures to the X-ray start time) appeared on average 14 minutes early. Our next goal is to develop an operational version of DEFT and to simulate and test its real-time use. A fully operational DEFT has the potential to significantly improve space weather forecast times.

2019 ◽  
Vol 9 ◽  
pp. A43 ◽  
Author(s):  
Edward M. B. Thiemann ◽  
Francis G. Eparvier ◽  
Don Woodraska ◽  
Phillip C. Chamberlin ◽  
Janet Machol ◽  
...  

The Geostationary Operational Environmental Satellite R (GOES-R) series of four satellites are the next generation NOAA GOES satellites. Once on orbit and commissioned, they are renamed GOES 16–19, making critical terrestrial and space weather measurements through 2035. GOES 16 and 17 are currently on orbit, having been launched in 2016 and 2018, respectively. The GOES-R satellites include the Extreme Ultraviolet (EUV) and X-ray Irradiance Sensors (EXIS) instrument suite, which measures calibrated solar irradiance in eight lines or bands between 25 nm and 285 nm with the Extreme Ultraviolet Sensors (EUVS) instrument. EXIS also includes the X-Ray Sensor (XRS) instrument, which measures solar soft X-ray irradiance at the legacy GOES bands. The EUVS Measurements are used as inputs to the EUVS Model, a solar spectral irradiance model for space weather operations that predicts irradiance in twenty-two 5 nm wide intervals from 5 nm to 115 nm, and one 10 nm wide interval from 117 to 127 nm at 30 s cadence. Once fully operational, NOAA will distribute the EUVS Model irradiance with 1 min latency as a primary space weather data product, ushering in a new era of rapid dissemination and measurement continuity of EUV irradiance spectra. This paper describes the EUVS Model algorithms, data sources, calibration methods and associated uncertainties. Typical model (relative) uncertainties are less than ~5% for variability at time-scales longer than 6 h, and are ~25% for solar flare induced variability. The absolute uncertainties, originating from the instruments used to calibrate the EUVS Model, are ~10%. Examples of model results are presented at both sub-daily and multi-year timescales to demonstrate the model’s capabilities and limitations. Example solar flare irradiances are also modeled.


2020 ◽  
Vol 639 ◽  
pp. L5
Author(s):  
Dong Li ◽  
Song Feng ◽  
Wei Su ◽  
Yu Huang

Context. Very long-periodic pulsations during preflare phases (preflare-VLPs) have been detected in the full-disk solar soft X-ray (SXR) flux. They may be regarded as precursors to solar flares and may help us better understand the trigger mechanism of solar flares. Aims. In this Letter, we report a preflare-VLP event prior to the onset of an M1.1 circular-ribbon flare on 2015 October 16. It was simultaneously observed in Hα, SXR, and extreme ultraviolet (EUV) wavelengths. Methods. The SXR fluxes in 1−8 Å and 1−70 Å were recorded by the Geostationary Operational Environmental Satellite (GOES) and Extreme Ultraviolet Variability Experiment, respectively; the light curves in Hα and EUV 211 Å were integrated over a small local region, which were measured by the 1 m New Vacuum Solar Telescope and the Atmospheric Imaging Assembly (AIA), respectively. The preflare-VLP is identified as the repeat and quasi-periodic pulses in light curves during preflare phase. The quasi-periodicity can be determined from the Fourier power spectrum with Markov chain Monte Carlo-based Bayesian. Results. Seven well-developed pulses are found before the onset of an M1.1 circular-ribbon flare. They are firstly seen in the local light curve in Hα emission and then discovered in full-disk SXR fluxes in GOES 1−8 Å and ESP 1−70 Å, as well as the local light curve in AIA 211 Å. These well-developed pulses can be regarded as the preflare-VLP, which might be modulated by LRC-circuit oscillation in the current-carrying plasma loop. The quasi-period is estimated to be ∼9.3 min. Conclusions. We present the first report of a preflare-VLP event in the local Hα line and EUV wavelength, which could be considered a precursor of a solar flare. This finding should therefore prove useful for the prediction of solar flares, especially for powerful flares.


Author(s):  
Loukas Vlahos ◽  
Anastasios Anastasiadis ◽  
Athanasios Papaioannou ◽  
Athanasios Kouloumvakos ◽  
Heinz Isliker

Solar energetic particles are an integral part of the physical processes related with space weather. We present a review for the acceleration mechanisms related to the explosive phenomena (flares and/or coronal mass ejections, CMEs) inside the solar corona. For more than 40 years, the main two-dimensional cartoon representing our understanding of the explosive phenomena inside the solar corona remained almost unchanged. The acceleration mechanisms related to solar flares and CMEs also remained unchanged and were part of the same cartoon. In this review, we revise the standard cartoon and present evidence from recent global magnetohydrodynamic simulations that support the argument that explosive phenomena will lead to the spontaneous formation of current sheets in different parts of the erupting magnetic structure. The evolution of the large-scale current sheets and their fragmentation will lead to strong turbulence and turbulent reconnection during solar flares and turbulent shocks. In other words, the acceleration mechanism in flares and CME-driven shocks may be the same, and their difference will be the overall magnetic topology, the ambient plasma parameters, and the duration of the unstable driver. This article is part of the theme issue ‘Solar eruptions and their space weather impact’.


2020 ◽  
Author(s):  
Manuel Flores Soriano ◽  
Consuelo Cid

<p>SMOS is an Earth observing satellite that is been adapted to provide full polarization observations of the Sun at 1.4 GHz 24 hours a day. Its solar radio observations from the last decade will be released to the community by the middle of this year. In this presentation we show the capabilities of SMOS as a solar radio observatory and compare some of the most relevant radio bursts with data from GOES, LASCO, SDO and RSTN. We show how SMOS responds to different kinds of solar flares depending on their x-ray flux, and the kind of mass ejection or solar dimming that they have produced, if any. In addition to this we also show the potential of SMOS as a space weather tool to monitor GNSS satellites signal fades and to provide an early warning of Earth-directed coronal mass ejections.</p>


1992 ◽  
Vol 9 ◽  
pp. 657-658
Author(s):  
J.L. Linsky

Although coronae for stars other than the Sun have previously been detected only in the X-ray and radio portions of the spectrum, the HST and future spacecraft sensitive to ultraviolet (UV) and extreme ultraviolet (ETIV) light will have the spectral resolution to study the dynamics and spectroscopic diagnostics of hot coronal plasmas. In the UV region accessible to HST, forbidden lines of FeXII at 1242 and 1349Å, of FeXXI at 1354Å, and other species seen in solar flares, are predicted to be present in the spectra of active stars. Upcoming observations with the Goddard High Resolution Spectrograph (GHRS) by S. Maran will search for these lines in the dM2e star AU Mic and other stars.


2021 ◽  
Vol 73 (1) ◽  
Author(s):  
Kanya Kusano ◽  
Kiyoshi Ichimoto ◽  
Mamoru Ishii ◽  
Yoshizumi Miyoshi ◽  
Shigeo Yoden ◽  
...  

AbstractAlthough solar activity may significantly impact the global environment and socioeconomic systems, the mechanisms for solar eruptions and the subsequent processes have not yet been fully understood. Thus, modern society supported by advanced information systems is at risk from severe space weather disturbances. Project for solar–terrestrial environment prediction (PSTEP) was launched to improve this situation through synergy between basic science research and operational forecast. The PSTEP is a nationwide research collaboration in Japan and was conducted from April 2015 to March 2020, supported by a Grant-in-Aid for Scientific Research on Innovative Areas from the Ministry of Education, Culture, Sports, Science and Technology of Japan. By this project, we sought to answer the fundamental questions concerning the solar–terrestrial environment and aimed to build a next-generation space weather forecast system to prepare for severe space weather disasters. The PSTEP consists of four research groups and proposal-based research units. It has made a significant progress in space weather research and operational forecasts, publishing over 500 refereed journal papers and organizing four international symposiums, various workshops and seminars, and summer school for graduate students at Rikubetsu in 2017. This paper is a summary report of the PSTEP and describes the major research achievements it produced.


2021 ◽  
Vol 21 (11) ◽  
pp. 274
Author(s):  
Cheng-Ming Tan ◽  
Karl Ludwig Klein ◽  
Yi-Hua Yan ◽  
Satoshi Masuda ◽  
Bao-Lin Tan ◽  
...  

Abstract The energy and spectral shape of radio bursts may help us understand the generation mechanism of solar eruptions, including solar flares, coronal mass ejections, eruptive filaments, and various scales of jets. The different kinds of flares may have different characteristics of energy and spectral distribution. In this work, we selected 10 mostly confined flare events during October 2014 to investigate their overall spectral behaviour and the energy emitted in microwaves by using radio observations from microwaves to interplanetary radio waves, and X-ray observations of GOES, RHESSI, and Fermi/GBM. We found that: all the confined flare events were associated with a microwave continuum burst extending to frequencies of 9.4 ∼ 15.4 GHz, and the peak frequencies of all confined flare events are higher than 4.995 GHz and lower than or equal to 17 GHz. The median value is around 9 GHz. The microwave burst energy (or fluence) and the peak frequency are found to provide useful criteria to estimate the power of solar flares. The observations imply that the magnetic field in confined flares tends to be stronger than that in 412 flares studied by Nita et al. (2004). All 10 events studied did not produce detectable hard X-rays with energies above ∼300 keV indicating the lack of efficient acceleration of electrons to high energies in the confined flares.


2005 ◽  
Vol 1 (T26A) ◽  
pp. 75-88
Author(s):  
Donald B. Melrose ◽  
James A. Klimchuk ◽  
A.O. Benz ◽  
I.J.D. Craig ◽  
N. Gopalswamy ◽  
...  

AbstractCommission 10 aims at the study of various forms of solar activity, including networks, plages, pores, spots, fibrils, surges, jets, filaments/prominences, coronal loops, flares, coronal mass ejections (CMEs), solar cycle, microflares, nanoflares, coronal heating etc., which are all manifestation of the interplay of magnetic fields and solar plasma. Increasingly important is the study of solar activities as sources of various disturbances in the interplanetary space and near-Earth “space weather”.Over the past three years a major component of research on the active Sun has involved data from the RHESSI spacecraft. This review starts with an update on current and planned solar observations from spacecraft. The discussion of solar flares gives emphasis to new results from RHESSI, along with updates on other aspects of flares. Recent progress on two theoretical concepts, magnetic reconnection and magnetic helicity is then summarized, followed by discussions of coronal loops and heating, the magnetic carpet and filaments. The final topic discussed is coronal mass ejections and space weather.The discussions on each topic is relatively brief, and intended as an outline to put the extensive list of references in context.The review was prepared jointly by the members of the Organizing Committee, and the names of the primary contributors to the various sections are indicated in parentheses.


Sign in / Sign up

Export Citation Format

Share Document