scholarly journals Size Evolution of Close-in Super-Earths through Giant Impacts and Photoevaporation

2021 ◽  
Vol 923 (1) ◽  
pp. 81
Author(s):  
Yuji Matsumoto ◽  
Eiichiro Kokubo ◽  
Pin-Gao Gu ◽  
Kenji Kurosaki

Abstract The Kepler transit survey with follow-up spectroscopic observations has discovered numerous super-Earth sized planets and revealed intriguing features of their sizes, orbital periods, and their relations between adjacent planets. For the first time, we investigate the size evolution of planets via both giant impacts and photoevaporation to compare with these observed features. We calculate the size of a protoplanet, which is the sum of its core and envelope sizes, by analytical models. N-body simulations are performed to evolve planet sizes during the giant impact phase with envelope stripping via impact shocks. We consider the initial radial profile of the core mass and the initial envelope mass fractions as parameters. Inner planets can lose their whole envelopes via giant impacts, while outer planets can keep their initial envelopes, because they do not experience giant impacts. Photoevaporation is simulated to evolve planet sizes afterward. Our results suggest that the period-radius distribution of the observed planets would be reproduced if we perform simulations in which the initial radial profile of the core mass follows a wide range of power-law distributions and the initial envelope mass fractions are ∼0.1. Moreover, our model shows that the adjacent planetary pairs have similar sizes and regular spacings, with slight differences from detailed observational results such as the radius gap.

2007 ◽  
Vol 3 (S249) ◽  
pp. 301-303
Author(s):  
S.-L. Li ◽  
C. Agnor ◽  
D. N. C. Lin

AbstractTransit observations indicate a large dispersion in the internal structure among the known gas giants. This is a big challenge to the conventional sequential planetary formation scenario because the diversity is inconsistent with the expectation of some well defined critical condition for the onset of gas accretion in this scenario. We suggest that giant impacts may lead to the merger of planets or the accretion of planetary embryos and cause the diversity of the core mass. By using an SPH scheme, we show that direct parabolic collisions generally lead to the total coalescence of impinging gas giants whereas, during glancing collisions, the efficiency of core retention is much larger than that of the envelope. We also examine the adjustment of the gaseous envelope with a 1D Lagrangian hydrodynamic scheme. In the proximity of their host stars, the expansion of the planets' envelopes, shortly after sufficiently catastrophic impacts, can lead to a substantial loss of gas through Roche-lobe overflow. We are going to examine the possibility that the accretion of several Earth-mass objects can significantly enlarge the planets' photosphere and elevate the tidal dissipation rate over the time scale of 100 Myr.


2021 ◽  
Author(s):  
Fabian Seidler ◽  
Haiyang Wang ◽  
Sascha Quanz

<p>Since stars and their planets form from the same molecular clouds, stellar chemical composition can be informative, to first order, of planetary bulk chemistry. An important feature of terrestrial planets compared to their host stars is the depletion of volatiles, the most important being oxygen. Previous studies on planet interiors focus on the mass and radius constraints and/or the host stellar refractory elements (e.g. Fe, Si and Mg), neglecting devolatilisation and its impact on the final picture of planet mineralogy and structure. This work assesses to what extent the devolatilised stellar abundances reflect rocky planetary composition.  </p><p>We firstly test how the uncertainties associated with planetary mass and radius would affect the modelling results of core mass fraction – an important interior parameter. To do so, we choose the Sun-like star Kepler-21 (stellar abundance uncertainties <0.05 dex) as a case study and assume it hosts an Earth-mass-and-radius planet in its habitable zone. We then assign different levels of uncertainties to the mass and radius of the hypothetical planet, ranging from 0.1% to 20%. We find that with increasing uncertainty level, the modelling result of core mass fraction constrained by the devolatilised stellar abundances and mass and radius becomes identical with the core mass fraction constrained purely by the devolatilised stellar abundances. This reveals the increased modelling degeneracy with growing uncertainties in mass and radius measurements, but also the strong constraints placed by using the devolatilised stellar abundances.</p><p>We further investigate a sample of 12 confirmed exoplanets, which are all less than 10 Earth masses and 2 Earth radii – i.e. potentially terrestrial planets or super-Earths – and with the measured uncertainties in mass and radius respectively less than 35% and 10%. By comparing the prior and posterior distributions of mass and radius before and after introducing the devolatilised stellar abundances as another prior, we find that the posterior distributions of all samples, but 55 Cnc e and Kepler-107 c, can be sampled within the 2σ ranges of the prior distributions. For the two exceptional cases, it means that the devolatilised stellar abundances and the measured mass and radius are not compatible within the level of 2σ.</p><p>We also find a diverse distribution of the core mass fractions of the sample from 0% (i.e. coreless) up to 40%, which are consistent at the 2σ level with the core mass fractions purely constrained by mass and radius measurements (except Kepler-107 c and 55 Cnc e),  but are significantly constrained by adding the devolatilized stellar abundances. In contrast, the previous study for the similar sample shows nearly constant core mass fractions of ~ 30% based on the unaltered stellar abundances and by assuming 100% Fe sunk into the core (i.e. free of consideration of the oxidation state of the planets). We emphasise that to break the degeneracies of terrestrial-type exoplanet interior modelling, we must use well the currently available observables including planetary mass and radius and host stellar chemical compositions, but they must be viewed through the lens of planet formation  and the resulting devolatilization.</p>


2020 ◽  
Vol 495 (4) ◽  
pp. 4659-4680
Author(s):  
Eoin J Farrell ◽  
Jose H Groh ◽  
Georges Meynet ◽  
J J Eldridge ◽  
Sylvia Ekström ◽  
...  

ABSTRACT We introduce snapshot, a technique to systematically compute stellar structure models in hydrostatic and thermal equilibrium based on three structural properties – core mass Mcore, envelope mass Menv, and core composition. This approach allows us to connect these properties of stellar interiors to the luminosity and effective temperature Teff in a more systematic way than with stellar evolution models. We compute core-H burning models with total masses of Mtotal = 8–60 M⊙ and central H mass fractions from 0.70 to 0.05. Using these, we derive an analytical relationship between Mcore, Mtotal, and central H abundance that can be readily used in rapid stellar evolution algorithms. In contrast, core-He burning stars can have a wide range of combinations of Mcore, Menv, and core compositions. We compute core-He burning models with Mcore = 2–9 M⊙, Menv = 0–50 M⊙, and central He mass fractions of 0.50 and 0.01. Models with Mcore/Mtotal from 0.2 to 0.8 have convective envelopes, low Teff and will appear as red supergiants (RSGs). For a given Mcore, they exhibit a small variation in luminosity (0.02 dex) and Teff ($\sim 400\, \mathrm{K}$) over a wide range of Menv ($\sim$2–20 M⊙). This means that it is not possible to derive RSG masses from luminosities and Teff alone. We derive the following relationship between Mcore and the total luminosity of an RSG during core He burning: log Mcore ≃ 0.44log L/L⊙ − 1.38. At Mcore/Mtotal ≈ 0.2, our models exhibit a bistability and jump from an RSG to a BSG structure. Our models with Mcore/Mtotal > 0.8, which correspond to stripped stars produced by mass-loss or binary interaction, show that Teff has a strong dependence on Menv, Mcore, and the core composition. We constrain the mass of one of these stripped stars in a binary system, HD 45166, and find it to be less than its estimated dynamical mass. When a large observational sample of stripped stars becomes available, our results can be used to constrain their Mcore, Menv, mass-loss rates, and the physics of binary interaction.


Author(s):  
John Joseph Norris ◽  
Richard D. Sawyer

This chapter summarizes the advancement of duoethnography throughout its fifteen-year history, employing examples from a variety of topics in education and social justice to provide a wide range of approaches that one may take when conducting a duoethnography. A checklist articulates what its cofounders consider the core elements of duoethnographies, additional features that may or may not be employed and how some studies purporting to be duoethnographies may not be so. The chapter indicates connections between duoethnography and a number of methodological concepts including the third space, the problematics of representation, feminist inquiry, and critical theory using published examples by several duoethnographers.


Author(s):  
Guglielmo Costa ◽  
Alessandro Bressan ◽  
Michela Mapelli ◽  
Paola Marigo ◽  
Giuliano Iorio ◽  
...  

Abstract Pair-instability (PI) is expected to open a gap in the mass spectrum of black holes (BHs) between ≈40 − 65 M⊙ and ≈120 M⊙. The existence of the mass gap is currently being challenged by the detection of GW190521, with a primary component mass of $85^{+21}_{-14}$ M⊙. Here, we investigate the main uncertainties on the PI mass gap: the 12C(α, γ)16O reaction rate and the H-rich envelope collapse. With the standard 12C(α, γ)16O rate, the lower edge of the mass gap can be 70 M⊙ if we allow for the collapse of the residual H-rich envelope at metallicity Z ≤ 0.0003. Adopting the uncertainties given by the starlib database, for models computed with the 12C(α, γ)16O rate −1 σ, we find that the PI mass gap ranges between ≈80 M⊙ and ≈150 M⊙. Stars with MZAMS > 110 M⊙ may experience a deep dredge-up episode during the core helium-burning phase, that extracts matter from the core enriching the envelope. As a consequence of the He-core mass reduction, a star with MZAMS = 160 M⊙ may avoid the PI and produce a BH of 150 M⊙. In the −2 σ case, the PI mass gap ranges from 92 M⊙ to 110 M⊙. Finally, in models computed with 12C(α, γ)16O −3 σ, the mass gap is completely removed by the dredge-up effect. The onset of this dredge-up is particularly sensitive to the assumed model for convection and mixing. The combined effect of H-rich envelope collapse and low 12C(α, γ)16O rate can lead to the formation of BHs with masses consistent with the primary component of GW190521.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Jonathan H. Gosling ◽  
Oleg Makarovsky ◽  
Feiran Wang ◽  
Nathan D. Cottam ◽  
Mark T. Greenaway ◽  
...  

AbstractPristine graphene and graphene-based heterostructures can exhibit exceptionally high electron mobility if their surface contains few electron-scattering impurities. Mobility directly influences electrical conductivity and its dependence on the carrier density. But linking these key transport parameters remains a challenging task for both theorists and experimentalists. Here, we report numerical and analytical models of carrier transport in graphene, which reveal a universal connection between graphene’s carrier mobility and the variation of its electrical conductivity with carrier density. Our model of graphene conductivity is based on a convolution of carrier density and its uncertainty, which is verified by numerical solution of the Boltzmann transport equation including the effects of charged impurity scattering and optical phonons on the carrier mobility. This model reproduces, explains, and unifies experimental mobility and conductivity data from a wide range of samples and provides a way to predict a priori all key transport parameters of graphene devices. Our results open a route for controlling the transport properties of graphene by doping and for engineering the properties of 2D materials and heterostructures.


1993 ◽  
Vol 155 ◽  
pp. 572-572
Author(s):  
C.Y. Zhang

We have selected a sample of planetary nebulae, for which the core masses are determined using distance-independent parameters (Zhang and Kwok 1992). The chemical abundances of He, N, O, and C are taken from the literature for them. Relationships of the ratios of He/H, N/O, and C/O with various stellar parameters of planetary nebulae (PN), such as the core mass, the mass of the core plus the ionized nebular gas, the stellar age and temperature, are examined. It is found that the N/O increases with increasing mass, while the C/O first increases and then decreases with the core mass. No strong correlation seems to exist between the He/H and the core mass. A correlation of the N/O and He/H with the stellar temperature exists. The current dredge-up theory for the progenitor AGB stars cannot satisfactorily account for these patterns of chemical enrichment in PN. Furthermore, the correlations of the N/O and He/H with the stellar age and temperature indicate that besides the dredge-ups in the RG and AGB stages, physical processes that happen in the planetary nebula stage may also play a role in forming the observed patterns of chemical enrichment in the planetary nebulae.


2002 ◽  
Vol 11 (3) ◽  
pp. 096369350201100
Author(s):  
E.M. Gravel ◽  
T.D. Papathanasiou

Dual porosity fibrous media are important in a number of applications, ranging from bioreactor design and transport in living systems to composites manufacturing. In the present study we are concerned with the development of predictive models for the hydraulic permeability ( Kp) of various arrays of fibre bundles. For this we carry out extensive computations for viscous flow through arrays of fibre bundles using the Boundary Element Method (BEM) implemented on a multi-processor computer. Up to 350 individual filaments, arranged in square or hexagonal packing within bundles, which are also arranged in square of hexagonal packing, are included in each simulation. These are simple but not trivial models for fibrous preforms used in composites manufacturing – dual porosity systems characterised by different inter- and intra-tow porosities. The way these porosities affect the hydraulic permeability of such media is currently unknown and is elucidated through our simulations. Following numerical solution of the governing equations, ( Kp) is calculated from the computed flowrate through Darcy's law and is expressed as function of the inter- and intra-tow porosities (φ, φt) and of the filament radius ( Rf). Numerical results are also compared to analytical models. The latter form the starting point in the development of a dimensionless correlation for the permeability of such dual porosity media. It is found that the numerically computed permeabilities follow that correlation for a wide range of φ i, φt and Rf.


Author(s):  
Marios Patinios ◽  
James A. Scobie ◽  
Carl M. Sangan ◽  
J. Michael Owen ◽  
Gary D. Lock

In gas turbines, hot mainstream flow can be ingested into the wheel-space formed between stator and rotor disks as a result of the circumferential pressure asymmetry in the annulus; this ingress can significantly affect the operating life, performance, and integrity of highly stressed, vulnerable engine components. Rim seals, fitted at the periphery of the disks, are used to minimize ingress and therefore reduce the amount of purge flow required to seal the wheel-space and cool the disks. This paper presents experimental results from a new 1.5-stage test facility designed to investigate ingress into the wheel-spaces upstream and downstream of a rotor disk. The fluid-dynamically scaled rig operates at incompressible flow conditions, far removed from the harsh environment of the engine which is not conducive to experimental measurements. The test facility features interchangeable rim-seal components, offering significant flexibility and expediency in terms of data collection over a wide range of sealing flow rates. The rig was specifically designed to enable an efficient method of ranking and quantifying the performance of generic and engine-specific seal geometries. The radial variation of CO2 gas concentration, pressure, and swirl is measured to explore, for the first time, the flow structure in both the upstream and downstream wheel-spaces. The measurements show that the concentration in the core is equal to that on the stator walls and that both distributions are virtually invariant with radius. These measurements confirm that mixing between ingress and egress is essentially complete immediately after the ingested fluid enters the wheel-space and that the fluid from the boundary layer on the stator is the source of that in the core. The swirl in the core is shown to determine the radial distribution of pressure in the wheel-space. The performance of a double radial-clearance seal is evaluated in terms of the variation of effectiveness with sealing flow rate for both the upstream and the downstream wheel-spaces and is found to be independent of rotational Reynolds number. A simple theoretical orifice model was fitted to the experimental data showing good agreement between theory and experiment for all cases. This observation is of great significance as it demonstrates that the theoretical model can accurately predict ingress even when it is driven by the complex unsteady pressure field in the annulus upstream and downstream of the rotor. The combination of the theoretical model and the new test rig with its flexibility and capability for detailed measurements provides a powerful tool for the engine rim-seal designer.


Sign in / Sign up

Export Citation Format

Share Document