scholarly journals A circulant functional equation for the additive function and its stability

Axioms ◽  
2019 ◽  
Vol 8 (2) ◽  
pp. 76 ◽  
Author(s):  
Yang-Hi Lee ◽  
Gwang Kim

We will prove the generalized Hyers–Ulam stability and the hyperstability of the additive functional equation f(x1 + y1, x2 + y2, …, xn + yn) = f(x1, x2, … xn) + f(y1, y2, …, yn). By restricting the domain of a mapping f that satisfies the inequality condition used in the assumption part of the stability theorem, we partially generalize the results of the stability theorems of the additive function equations.


2019 ◽  
Vol 43 (6) ◽  
pp. 2821-2832
Author(s):  
Vichian LAOHAKOSOL ◽  
Watcharapon PIMSERT ◽  
Kanet PONPETCH

Mathematics ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 382
Author(s):  
Muhammad Sarfraz ◽  
Qi Liu ◽  
Yongjin Li

This research paper focuses on the investigation of the solutions χ:G→R of the maximum functional equation max{χ(xy),χ(xy−1)}=χ(x)χ(y), for every x,y∈G, where G is any group. We determine that if a group G is divisible by two and three, then every non-zero solution is necessarily strictly positive; by the work of Toborg, we can then conclude that the solutions are exactly the e|α| for an additive function α:G→R. Moreover, our investigation yields reliable solutions to a functional equation on any group G, instead of being divisible by two and three. We also prove the existence of normal subgroups Zχ and Nχ of any group G that satisfy some properties, and any solution can be interpreted as a function on the abelian factor group G/Nχ.


Mathematics ◽  
2019 ◽  
Vol 7 (6) ◽  
pp. 510 ◽  
Author(s):  
Yang-Hi Lee

The general quintic functional equation and the general sextic functional equation are generalizations of many functional equations such as the additive function equation and the quadratic function equation. In this paper, we investigate Hyers–Ulam–Rassias stability of the general quintic functional equation and the general sextic functional equation.


2003 ◽  
Vol 14 (2) ◽  
pp. 107-118 ◽  
Author(s):  
Harro L. Hartmann ◽  
Martin Knoke

2016 ◽  
Vol 12 (3) ◽  
pp. 4368-4374
Author(s):  
Soo Hwan Kim

In this paper, we extend normed spaces to quasi-normed spaces and prove the generalized Hyers-Ulam stability of a nonic functional equation:$$\aligned&f(x+5y) - 9f(x+4y) + 36f(x+3y) - 84f(x+2y) + 126f(x+y) - 126f(x)\\&\qquad + 84f(x-y)-36f(x-2y)+9f(x-3y)-f(x-4y) = 9 ! f(y),\endaligned$$where $9 ! = 362880$ in quasi-normed spaces.


2013 ◽  
Vol 59 (2) ◽  
pp. 299-320
Author(s):  
M. Eshaghi Gordji ◽  
Y.J. Cho ◽  
H. Khodaei ◽  
M. Ghanifard

Abstract In this paper, we investigate the general solution and the generalized stability for the quartic, cubic and additive functional equation (briefly, QCA-functional equation) for any k∈ℤ-{0,±1} in Menger probabilistic normed spaces.


Sign in / Sign up

Export Citation Format

Share Document