scholarly journals Following Forrelation – quantum algorithms in exploring Boolean functions' spectra

2022 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Suman Dutta ◽  
Subhamoy Maitra ◽  
Chandra Sekhar Mukherjee

<p style='text-indent:20px;'>Here we revisit the quantum algorithms for obtaining Forrelation [Aaronson et al., 2015] values to evaluate some of the well-known cryptographically significant spectra of Boolean functions, namely the Walsh spectrum, the cross-correlation spectrum, and the autocorrelation spectrum. We introduce the existing 2-fold Forrelation formulation with bent duality-based promise problems as desirable instantiations. Next, we concentrate on the 3-fold version through two approaches. First, we judiciously set up some of the functions in 3-fold Forrelation so that given oracle access, one can sample from the Walsh Spectrum of <inline-formula><tex-math id="M1">\begin{document}$ f $\end{document}</tex-math></inline-formula>. Using this, we obtain improved results than what one can achieve by exploiting the Deutsch-Jozsa algorithm. In turn, it has implications in resiliency checking. Furthermore, we use a similar idea to obtain a technique in estimating the cross-correlation (and thus autocorrelation) value at any point, improving upon the existing algorithms. Finally, we tweak the quantum algorithm with the superposition of linear functions to obtain a cross-correlation sampling technique. This is the first cross-correlation sampling algorithm with constant query complexity to the best of our knowledge. This also provides a strategy to check if two functions are uncorrelated of degree <inline-formula><tex-math id="M2">\begin{document}$ m $\end{document}</tex-math></inline-formula>. We further modify this using Dicke states so that the time complexity reduces, particularly for constant values of <inline-formula><tex-math id="M3">\begin{document}$ m $\end{document}</tex-math></inline-formula>.</p>

2015 ◽  
pp. 435-452
Author(s):  
Andris Ambainis ◽  
Jozef Gruska ◽  
Shenggen Zheng

It has been proved that almost all n-bit Boolean functions have exact classical query complexity n. However, the situation seemed to be very different when we deal with exact quantum query complexity. In this paper, we prove that almost all n-bit Boolean functions can be computed by an exact quantum algorithm with less than n queries. More exactly, we prove that ANDn is the only n-bit Boolean function, up to isomorphism, that requires n queries.


1988 ◽  
Vol 129 ◽  
pp. 233-234
Author(s):  
Aubrey D. Haschick ◽  
Willem A. Baan ◽  
Matthew H. Schneps ◽  
Mark J. Reid ◽  
James M. Moran

On 1984 October 6 we conducted a 3-station intercontinental Mark II VLBI experiment in order to study the very luminous water vapor maser source in the nucleus of the galaxy NGC 3079, which was detected first by Haschick and Baan (1985) using the Haystack Observatory 36.6 m antenna. The cross correlation spectrum for the longest Owens Valley to MPI baseline is presented in Figure 1 and shows the phase variation across the width of the brightest feature at 955.7 km s−1 to be less than 10 degrees of phase.


2017 ◽  
Vol 17 (7&8) ◽  
pp. 541-567
Author(s):  
Imdad S.B. Sardharwalla ◽  
Sergii Strelchuk ◽  
Richard Jozsa

We define and study a new type of quantum oracle, the quantum conditional oracle, which provides oracle access to the conditional probabilities associated with an underlying distribution. Amongst other properties, we (a) obtain highly efficient quantum algorithms for identity testing, equivalence testing and uniformity testing of probability distributions; (b) study the power of these oracles for testing properties of boolean functions, and obtain an algorithm for checking whether an n-input m-output boolean function is balanced or e-far from balanced; and (c) give an algorithm, requiring O˜(n/e) queries, for testing whether an n-dimensional quantum state is maximally mixed or not.


Author(s):  
Jianxin Chen ◽  
Andrew M. Childs ◽  
Shih-Han Hung

How many quantum queries are required to determine the coefficients of a degree- d polynomial in n variables? We present and analyse quantum algorithms for this multivariate polynomial interpolation problem over the fields F q , R and C . We show that k C and 2 k C queries suffice to achieve probability 1 for C and R , respectively, where k C = ⌈ ( 1 / ( n + 1 ) ) ( n + d d ) ⌉ except for d =2 and four other special cases. For F q , we show that ⌈( d /( n + d ))( n + d d ) ⌉ queries suffice to achieve probability approaching 1 for large field order q . The classical query complexity of this problem is ( n + d d ) , so our result provides a speed-up by a factor of n +1, ( n +1)/2 and ( n + d )/ d for C , R and F q , respectively. Thus, we find a much larger gap between classical and quantum algorithms than the univariate case, where the speedup is by a factor of 2. For the case of F q , we conjecture that 2 k C queries also suffice to achieve probability approaching 1 for large field order q , although we leave this as an open problem.


2005 ◽  
Vol 03 (02) ◽  
pp. 359-370 ◽  
Author(s):  
SUBHAMOY MAITRA ◽  
PARTHA MUKHOPADHYAY

Boolean functions are important building blocks in cryptography for their wide application in both stream and block cipher systems. For cryptanalysis of such systems, one tries to find out linear functions that are correlated to the Boolean functions used in the crypto system. Let f be an n-variable Boolean function and its Walsh spectra is denoted by Wf(ω) at the point ω ∈ {0, 1}n. The Boolean function is available in the form of an oracle. We like to find a ω such that Wf(ω) ≠ 0 as this will provide one of the linear functions which are correlated to f. We show that the quantum algorithm proposed by Deutsch and Jozsa7 solves this problem in constant time. However, the best known classical algorithm to solve the problem requires exponential time in n. We also analyze certain classes of cryptographically significant Boolean functions and highlight how the basic Deutsch–Jozsa algorithm performs on them.


2012 ◽  
Vol 588-589 ◽  
pp. 948-952
Author(s):  
Wei Zhang ◽  
Jin Fang Cheng ◽  
Jie Xu

At present the cross-correlation processing can only suppress the isotropic noise by vector hydrophone sound pressure and vibration velocity combined. The coherent composition of the actual ambient noise makes the detection ability of cross-correlation spectrum reduced. Use XWVD theory, proposed a cross symmetry-correlation function (Cross-SCF). Analysis of simulation data under different SNR and Different nature noise combination proving that the noise suppression Performance of suggested Cross-SCF has nothing to do with noise properties, and compared with the cross-correlation processing have indeed better than coherent noise suppression ability.


2021 ◽  
Vol 182 (4) ◽  
pp. 321-344
Author(s):  
Xie Zhengwei ◽  
Qiu Daowen ◽  
Cai Guangya ◽  
Jozef Gruska ◽  
Paulo Mateus

The goal in the area of functions property testing is to determine whether a given black-box Boolean function has a particular given property or is ɛ-far from having that property. We investigate here several types of properties testing for Boolean functions (identity, correlations and balancedness) using the Deutsch-Jozsa algorithm (for the Deutsch-Jozsa (D-J) problem) and also the amplitude amplification technique. At first, we study here a particular testing problem: namely whether a given Boolean function f, of n variables, is identical with a given function g or is ɛ-far from g, where ɛ is the parameter. We present a one-sided error quantum algorithm to deal with this problem that has the query complexity O(1ε). Moreover, we show that our quantum algorithm is optimal. Afterwards we show that the classical randomized query complexity of this problem is Θ(1ε). Secondly, we consider the D-J problem from the perspective of functional correlations and let C(f, g) denote the correlation of f and g. We propose an exact quantum algorithm for making distinction between |C(f, g)| = ɛ and |C(f, g)| = 1 using six queries, while the classical deterministic query complexity for this problem is Θ(2n) queries. Finally, we propose a one-sided error quantum query algorithm for testing whether one Boolean function is balanced versus ɛ-far balanced using O(1ε) queries. We also prove here that our quantum algorithm for balancedness testing is optimal. At the same time, for this balancedness testing problem we present a classical randomized algorithm with query complexity of O(1/ɛ2). Also this randomized algorithm is optimal. Besides, we link the problems considered here together and generalize them to the general case.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 403
Author(s):  
Daniel Copeland ◽  
Jamie Pommersheim

We study the query complexity of quantum learning problems in which the oracles form a group G of unitary matrices. In the simplest case, one wishes to identify the oracle, and we find a description of the optimal success probability of a t-query quantum algorithm in terms of group characters. As an application, we show that Ω(n) queries are required to identify a random permutation in Sn. More generally, suppose H is a fixed subgroup of the group G of oracles, and given access to an oracle sampled uniformly from G, we want to learn which coset of H the oracle belongs to. We call this problem coset identification and it generalizes a number of well-known quantum algorithms including the Bernstein-Vazirani problem, the van Dam problem and finite field polynomial interpolation. We provide character-theoretic formulas for the optimal success probability achieved by a t-query algorithm for this problem. One application involves the Heisenberg group and provides a family of problems depending on n which require n+1 queries classically and only 1 query quantumly.


Quantum ◽  
2021 ◽  
Vol 5 ◽  
pp. 529
Author(s):  
Chenyi Zhang ◽  
Jiaqi Leng ◽  
Tongyang Li

We initiate the study of quantum algorithms for escaping from saddle points with provable guarantee. Given a function f:Rn→R, our quantum algorithm outputs an ϵ-approximate second-order stationary point using O~(log2⁡(n)/ϵ1.75) queries to the quantum evaluation oracle (i.e., the zeroth-order oracle). Compared to the classical state-of-the-art algorithm by Jin et al. with O~(log6⁡(n)/ϵ1.75) queries to the gradient oracle (i.e., the first-order oracle), our quantum algorithm is polynomially better in terms of log⁡n and matches its complexity in terms of 1/ϵ. Technically, our main contribution is the idea of replacing the classical perturbations in gradient descent methods by simulating quantum wave equations, which constitutes the improvement in the quantum query complexity with log⁡n factors for escaping from saddle points. We also show how to use a quantum gradient computation algorithm due to Jordan to replace the classical gradient queries by quantum evaluation queries with the same complexity. Finally, we also perform numerical experiments that support our theoretical findings.


2009 ◽  
Vol 9 (7&8) ◽  
pp. 628-647
Author(s):  
A. Montanaro

We investigate the generalisation of quantum search of unstructured and totally ordered sets to search of partially ordered sets (posets). Two models for poset search are considered. In both models, we show that quantum algorithms can achieve at most a quadratic improvement in query complexity over classical algorithms, up to logarithmic factors; we also give quantum algorithms that almost achieve this optimal reduction in complexity. In one model, we give an improved quantum algorithm for searching forest-like posets; in the other, we give an optimal $O(\sqrt{m})$-query quantum algorithm for searching posets derived from $m \times m$ arrays sorted by rows and columns. This leads to a quantum algorithm that finds the intersection of two sorted lists of $n$ integers in $O(\sqrt{n})$ time, which is optimal.


Sign in / Sign up

Export Citation Format

Share Document