scholarly journals Hausdorff dimension for ergodic measures of interval exchange transformations

2008 ◽  
Vol 2 (3) ◽  
pp. 457-464 ◽  
Author(s):  
Jon Chaika ◽  
2017 ◽  
Vol 39 (1) ◽  
pp. 248-256
Author(s):  
DONALD ROBERTSON

We prove that irreducible, linearly recurrent, type W interval-exchange transformations are always mild mixing. For every irreducible permutation, the set of linearly recurrent interval-exchange transformations has full Hausdorff dimension.


2020 ◽  
pp. 1-55
Author(s):  
MICHAEL DAMRON ◽  
JON FICKENSCHER

Abstract If $\mathcal {A}$ is a finite set (alphabet), the shift dynamical system consists of the space $\mathcal {A}^{\mathbb {N}}$ of sequences with entries in $\mathcal {A}$ , along with the left shift operator S. Closed S-invariant subsets are called subshifts and arise naturally as encodings of other systems. In this paper, we study the number of ergodic measures for transitive subshifts under a condition (‘regular bispecial condition’) on the possible extensions of words in the associated language. Our main result shows that under this condition, the subshift can support at most $({K+1})/{2}$ ergodic measures, where K is the limiting value of $p(n+1)-p(n)$ , and p is the complexity function of the language. As a consequence, we answer a question of Boshernitzan from 1984, providing a combinatorial proof for the bound on the number of ergodic measures for interval exchange transformations.


2014 ◽  
Vol 16 (01) ◽  
pp. 1350019 ◽  
Author(s):  
JONATHAN FICKENSCHER

Thanks to works by Kontsevich and Zorich followed by Boissy, we have a classification of all Rauzy Classes of any given genus. It follows from these works that Rauzy Classes are closed under the operation of inverting the permutation. In this paper, we shall prove the existence of self-inverse permutations in every Rauzy Class by giving an explicit construction of such an element satisfying the sufficient conditions. We will also show that self-inverse permutations are Lagrangian, meaning any suspension has its vertical cycles span a Lagrangian subspace in homology. This will simplify the proof of a lemma in a work by Forni. Veech proved a bound on the number of distinct ergodic probability measures for a given minimal interval exchange transformation. We verify that this bound is sharp by constructing examples in each Rauzy Class.


Axioms ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 80
Author(s):  
Sergey Kryzhevich ◽  
Viktor Avrutin ◽  
Nikita Begun ◽  
Dmitrii Rachinskii ◽  
Khosro Tajbakhsh

We studied topological and metric properties of the so-called interval translation maps (ITMs). For these maps, we introduced the maximal invariant measure and demonstrated that an ITM, endowed with such a measure, is metrically conjugated to an interval exchange map (IEM). This allowed us to extend some properties of IEMs (e.g., an estimate of the number of ergodic measures and the minimality of the symbolic model) to ITMs. Further, we proved a version of the closing lemma and studied how the invariant measures depend on the parameters of the system. These results were illustrated by a simple example or a risk management model where interval translation maps appear naturally.


Sign in / Sign up

Export Citation Format

Share Document