scholarly journals Hamilton type gradient estimates for a general type of nonlinear parabolic equations on Riemannian manifolds

2021 ◽  
Vol 6 (10) ◽  
pp. 10506-10522
Author(s):  
Fanqi Zeng ◽  

<abstract><p>In this paper, we prove Hamilton type gradient estimates for positive solutions to a general type of nonlinear parabolic equation concerning $ V $-Laplacian:</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ (\Delta_{V}-q(x, t)-\partial_{t})u(x, t) = A(u(x, t)) $\end{document} </tex-math></disp-formula></p> <p>on complete Riemannian manifold (with fixed metric). When $ V = 0 $ and the metric evolves under the geometric flow, we also derive some Hamilton type gradient estimates. Finally, as applications, we obtain some Liouville type theorems of some specific parabolic equations.</p></abstract>

2022 ◽  
Vol 32 (2) ◽  
Author(s):  
Cecilia Cavaterra ◽  
Serena Dipierro ◽  
Zu Gao ◽  
Enrico Valdinoci

Sign in / Sign up

Export Citation Format

Share Document