Hamilton type gradient estimates for a general type of nonlinear parabolic equations on Riemannian manifolds
Keyword(s):
<abstract><p>In this paper, we prove Hamilton type gradient estimates for positive solutions to a general type of nonlinear parabolic equation concerning $ V $-Laplacian:</p> <p><disp-formula> <label/> <tex-math id="FE1"> \begin{document}$ (\Delta_{V}-q(x, t)-\partial_{t})u(x, t) = A(u(x, t)) $\end{document} </tex-math></disp-formula></p> <p>on complete Riemannian manifold (with fixed metric). When $ V = 0 $ and the metric evolves under the geometric flow, we also derive some Hamilton type gradient estimates. Finally, as applications, we obtain some Liouville type theorems of some specific parabolic equations.</p></abstract>
2016 ◽
Vol 36
(2)
◽
pp. 514-526
◽
2016 ◽
Vol 290
(11-12)
◽
pp. 1905-1917
◽
2003 ◽
Vol 3
(4)
◽
pp. 577-602
◽
2013 ◽
Vol 254
(11)
◽
pp. 4290-4326
◽
1999 ◽
Vol 93
(5)
◽
pp. 661-688
◽