Prestack waveform inversion of the East Texas Woodbine Gas Sands using a genetic algorithm

Author(s):  
S. Mallick
2021 ◽  
pp. 1-97
Author(s):  
Lingxiao Jia ◽  
Subhashis Mallick ◽  
Cheng Wang

The choice of an initial model for seismic waveform inversion is important. In matured exploration areas with adequate well control, we can generate a suitable initial model using well information. However, in new areas where well control is sparse or unavailable, such an initial model is compromised and/or biased by the regions with more well controls. Even in matured exploration areas, if we use time-lapse seismic data to predict dynamic reservoir properties, an initial model, that we obtain from the existing preproduction wells could be incorrect. In this work, we outline a new methodology and workflow for a nonlinear prestack isotropic elastic waveform inversion. We call this method a data driven inversion, meaning that we derive the initial model entirely from the seismic data without using any well information. By assuming a locally horizonal stratification for every common midpoint and starting from the interval P-wave velocity, estimated entirely from seismic data, our method generates pseudo wells by running a two-pass one-dimensional isotropic elastic prestack waveform inversion that uses the reflectivity method for forward modeling and genetic algorithm for optimization. We then use the estimated pseudo wells to build the initial model for seismic inversion. By applying this methodology to real seismic data from two different geological settings, we demonstrate the usefulness of our method. We believe that our new method is potentially applicable for subsurface characterization in areas where well information is sparse or unavailable. Additional research is however necessary to improve the compute-efficiency of the methodology.


Geophysics ◽  
1999 ◽  
Vol 64 (2) ◽  
pp. 326-336 ◽  
Author(s):  
Subhashis Mallick

In this paper, a prestack inversion method using a genetic algorithm (GA) is presented, and issues relating to the implementation of prestack GA inversion in practice are discussed. GA is a Monte‐Carlo type inversion, using a natural analogy to the biological evolution process. When GA is cast into a Bayesian framework, a priori information of the model parameters and the physics of the forward problem are used to compute synthetic data. These synthetic data can then be matched with observations to obtain approximate estimates of the marginal a posteriori probability density (PPD) functions in the model space. Plots of these PPD functions allow an interpreter to choose models which best describe the specific geologic setting and lead to an accurate prediction of seismic lithology. Poststack inversion and prestack GA inversion were applied to a Woodbine gas sand data set from East Texas. A comparison of prestack inversion with poststack inversion demonstrates that prestack inversion shows detailed stratigraphic features of the subsurface which are not visible on the poststack inversion.


Geophysics ◽  
2019 ◽  
Vol 84 (5) ◽  
pp. R815-R825 ◽  
Author(s):  
Zhen Xing ◽  
Alfredo Mazzotti

We have applied our two-grid genetic-algorithm Rayleigh-wave full-waveform inversion (FWI) to two actual data sets acquired in Luni (Italy) and Grenoble (France), respectively. Because our technique used 2D elastic finite-difference modeling for solving the forward problem, the observed data were 3D to 2D corrected prior to the inversion. To limit the computing time, both inversions focused on predicting low-resolution, smooth models by using quite coarse inversion grids. The wavelets for FWI were estimated directly from the observed data by using the Wiener method. In the Luni case, due to the strong dispersion effects on the data, to strengthen the inversion, envelopes and waveforms were considered in the objective function and an offset-marching strategy was applied. Though no a priori information was exploited, the outcomes of the Luni and Grenoble data inversion were fair. The predicted Luni [Formula: see text] model indicates a strong velocity increase from approximately 3 to 6 m, and velocity inversions have been detected at approximately 2 and 9 m depths. Analyzing the dispersion spectra, it results that the predicted Luni data reasonably reproduced the waveforms related to the fundamental mode and, likely, a small part of those related to the first higher mode. Concerning the Grenoble example, the predicted [Formula: see text] model coincides reasonably well with the long-wavelength structures presented in the [Formula: see text] profiles obtained from nearby boreholes. The data reconstruction is generally satisfactory, and when mismatches occur between the predicted and observed traces, the phase differences are always within half-periods. The fair inversion outcomes suggest that the predicted Luni and Grenoble models would likely be adequate initial models for local FWI, which could further increase the resolution and the details of the estimated [Formula: see text] models.


Sign in / Sign up

Export Citation Format

Share Document