DATA SECURITY — THE NEXT IMPERATIVE IN HEALTHCARE SYSTEMS

Author(s):  
Harminder Kaur ◽  
Sharavan Kumar Pahuja

Wireless Sensor Networks (WSNs) have significantly impacted healthcare applications by giving the possibility of monitoring the patient’s physiological parameters using different sensors. The use of WSN and the wireless Body Area Networks (WBANs) offers possible solutions for monitoring the health parameters in remote areas. On the other hand, the use of wireless communication medium and information security is the primary concern in WBANs. Because WBANs use the different small sensors placed on the human body to collect the physiological data. They need resource and computational restrictions, thus, building the use of complex and advanced encryption algorithms infeasible. It is essential in the WBAN to monitor and transmit the data to provide reliable and secure communication. Wrong and incomplete information can create difficulties in patient health which can be sometimes more dangerous. This gives the motivation to make such security protocols or algorithms to achieve high security in WBANs. So, the research has been currently focused on reliable communication between the doctor and patient, routing algorithms, and the data’s security by using various new technologies. This paper discusses the different security threats and solutions for designing healthcare applications and routing and layer attacks. Furthermore, the paper has been focused on the Data Distribution Service Models for data security. The paper also includes artificial intelligence and machine learning algorithms in healthcare implemented by various companies.

Author(s):  
Anuj Joshi ◽  
Pallavi Srivastava ◽  
Poonam Singh

Mobile Ad Hoc Network (MANET) is a collection of communication devices or nodes that wish to communicate without any fixed infrastructure and pre-determined organization of available links. The nodes in MANET themselves are responsible for dynamically discovering other nodes to communicate. Although the ongoing trend is to adopt ad hoc networks for commercial uses due to the property of its capability in forming temporary network without the aid of any established infrastructure or centralized administration. Due to this unique property, the main challenge is the vulnerability to security attacks. A number of challenges like open peer-to-peer network architecture, stringent resource constraints, shared wireless medium, dynamic network topology etc. are posed in MANET. As MANET is quickly spreading for, security challenges has become a primary concern to provide secure communication. In this paper, we identify the existent security threats an ad hoc network faces, the security services required to be achieved and the countermeasures for attacks in each layer. To accomplish our goal, we have done literature survey in gathering information related to various types of attacks and solutions, as well as we have identified the challenges and proposed solutions to overcome them. In conclusion, we focus on the findings and future works which may be interesting for the researchers like robust key management, trust based systems, data security in different layer etc. However, in short, we can say that the complete security solution requires the prevention, detection and reaction mechanisms applied in MANET.


2017 ◽  
Vol 2 (3) ◽  
pp. 1
Author(s):  
Hanane Bennasar ◽  
Mohammad Essaaidi ◽  
Ahmed Bendahmane ◽  
Jalel Benothmane

Cloud computing cyber security is a subject that has been in top flight for a long period and even in near future. However, cloud computing permit to stock up a huge number of data in the cloud stockage, and allow the user to pay per utilization from anywhere via any terminal equipment. Among the major issues related to Cloud Computing security, we can mention data security, denial of service attacks, confidentiality, availability, and data integrity. This paper is dedicated to a taxonomic classification study of cloud computing cyber-security. With the main objective to identify the main challenges and issues in this field, the different approaches and solutions proposed to address them and the open problems that need to be addressed.


Electronics ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 404
Author(s):  
Yasmeen Al-Saeed ◽  
Eman Eldaydamony ◽  
Ahmed Atwan ◽  
Mohammed Elmogy ◽  
Osama Ouda

Wireless Body Area Networks (WBANs) are increasingly employed in different medical applications, such as remote health monitoring, early detection of medical conditions, and computer-assisted rehabilitation. A WBAN connects a number of sensor nodes implanted in and/or fixed on the human body for monitoring his/her physiological characteristics. Although medical healthcare systems could significantly benefit from the advancement of WBAN technology, collecting and transmitting private physiological data in such an open environment raises serious security and privacy concerns. In this paper, we propose a novel key-agreement protocol to secure communications among sensor nodes of WBANs. The proposed protocol is based on measuring and verifying common physiological features at both sender and recipient sensors prior to communicating. Unlike existing protocols, the proposed protocol enables communicating sensors to use their previous session pre-knowledge for secure communication within a specific period of time. This will reduce the time required for establishing the shared key as well as avoid retransmitting extracted features in the medium and hence thwarting eavesdropping attacks while maintaining randomness of the key. Experimental results illustrate the superiority of the proposed key agreement protocol in terms of both feature extraction and key agreement phases with an accuracy of 99.50% and an error rate of 0.005%. The efficacy of the proposed protocol with respect to energy and memory utilization is demonstrated compared with existing key agreement protocols.


Author(s):  
Herb A Phelan ◽  
James H Holmes IV ◽  
William L Hickerson ◽  
Clay J Cockerell ◽  
Jeffrey W Shupp ◽  
...  

Abstract Introduction Burn experts are only 77% accurate when subjectively assessing burn depth, leaving almost a quarter of patients to undergo unnecessary surgery or conversely suffer a delay in treatment. To aid clinicians in burn depth assessment (BDA), new technologies are being studied with machine learning algorithms calibrated to histologic standards. Our group has iteratively created a theoretical burn biopsy algorithm (BBA) based on histologic analysis, and subsequently informed it with the largest burn wound biopsy repository in the literature. Here, we sought to report that process. Methods The was an IRB-approved, prospective, multicenter study. A BBA was created a priori and refined in an iterative manner. Patients with burn wounds assessed by burn experts as requiring excision and autograft underwent 4mm biopsies procured every 25cm 2. Serial still photos were obtained at enrollment and at excision intraoperatively. Burn biopsies were histologically assessed for presence/absence of epidermis, papillary dermis, reticular dermis, and proportion of necrotic adnexal structures by a dermatopathologist using H&E with whole slide scanning. First degree and superficial 2 nd degree were considered to be burn wounds likely to have healed without surgery, while deep 2 nd and 3 rd degree burns were considered unlikely to heal by 21 days. Biopsy pathology results were correlated with still photos by five burn experts for consensus of final burn depth diagnosis. Results Sixty-six subjects were enrolled with 117 wounds and 816 biopsies. The BBA was used to categorize subjects’ wounds into 4 categories: 7% of burns were categorized as 1 st degree, 13% as superficial 2 nd degree, 43% as deep 2 nd degree, and 37% as 3 rd degree. Therefore 20% of burn wounds were incorrectly judged as needing excision and grafting by the clinical team as per the BBA. As H&E is unable to assess the viability of papillary and reticular dermis, with time our team came to appreciate the greater importance of adnexal structure necrosis over dermal appearance in assessing healing potential. Conclusions Our study demonstrates that a BBA with objective histologic criteria can be used to categorize BDA with clinical misclassification rates consistent with past literature. This study serves as the largest analysis of burn biopsies by modern day burn experts and the first to define histologic parameters for BDA.


Author(s):  
E. S. Zinovieva ◽  
Y. I. Vojtenko

Abstract: The development of post-industrial society initiates profound economic, technological and cultural change in the way of life of all mankind. The revolutionary breakthroughs in the field of new technologies such as biotechnology and information technology are reflected in all spheres of human activity, directly affecting the human security. The article analyzes the consequences of widespread usage biotechnology and information technology in the foreign policy practice on the basis of the human security theory. The detailed description of the main directions of the use of biometric technology in the foreign policy and consular practices is provided, the challenges and threats to information security associated with biometrics are analyzed, arising from widespread biotechnology are the main challenges and threats to as well as human security threats arising at the present stage of development and application of these technologies. Human security threats associated with the use of biotechnology are placed in the broader context of global trends in scientific and technological development. The recommendations are formulated in the field of foreign policy and international cooperation, which would neutralize new threats to international and personal safety arising at the present stage of development of biotechnology. The authors conclude that in order to ensure ethical regulation of new technologies that address issues of human security, it is necessary to organize multi-stakeholder partnerships at national and international level with the participation of states, representatives of civil society, business and the research community.


2021 ◽  
Author(s):  
hideyat zerga ◽  
Asma AMRAOUI ◽  
badr BENMAMMAR

Abstract In the fight against the COVID-19 epidemic that is currently a major global public health issue, social distancing has been imposed to prevent the massive transmission, thus doctors in hospitals have turned to telemedicine in order to be able to monitor their patient notably those suffering from chronic diseases. To do so, patients need to share their physiological data with doctors. In order to share this data safely, prevent malicious users from tampering with it and protect the privacy of patients, access control becomes a fundamental requirement. In order to set up a real-time (Internet of Thing) IoT enabled healthcare system (HS) scenario like telemedicine, Fog computing (FC) seems to be the best solution comparing to Cloud computing since it provides low latency, highly mobile and geo-distributed services and temporary storage. In this paper, the focus is on access control in the telemedicine systems. Our proposal is based, on one hand, the concept of Fog computing to ensure the distributed aspect needed in the monitoring of patient health remotely; and on the other hand Blockchain (BC) smart contracts, in order to provide a dynamic, optimized and self-adjusted access control.


2017 ◽  
Vol 55 (10) ◽  
pp. 70-75 ◽  
Author(s):  
Wen-Long Chin ◽  
Wan Li ◽  
Hsiao-Hwa Chen

Author(s):  
Swateja Nimkar ◽  
Erin Elysia Gilles

The widespread use of smartphones makes them a popular platform for healthcare applications. This article reveals the global trends and overarching goals of mHealth initiatives that seek to enhance healthcare quality, increase access to health services, and improve global health communication. Three main themes emerged from this study: a) the impact of mHealth on international public health, b) overcoming mhealth barriers, and c) emerging mHealth technologies. The costs of developing mHealth apps and handling related data security concerns are the key barriers which need to be addressed to successfully implement global mHealth campaigns. Future directions of mHealth research are discussed, including the integration of new technologies, development of innovative healthcare systems, and overall improvement of global healthcare.


Sign in / Sign up

Export Citation Format

Share Document