Biotechnology of Microbial Xylanase

Author(s):  
Hooi Ling Ho

Xylanases are inducible enzymes responsible for the complete hydrolysis of xylan into xylose. Both solid state fermentation (SsF) and submerged fermentation (SmF) are used in the production of xylanase. SsF has become a popular approach due to its economic value. In fact, higher biomass and lower protein breakdown are among the factors involved in determining the production of xylanases in SsF. Agricultural extracts which are abundantly available in the environment such as rice bran and wheat bran are commonly used as the potential carbon source in xylanases production. Xylanase is indeed one of the valuable enzymes which show immense potential in vast industrial applications. The demand for xylanase is increasing because of its prodigious utilization in pulp and paper, bakery, food and beverage, detergents, textile, and animal feed. Xylanase has therefore become one of the important commercial enzymes in recent years.

Biotechnology ◽  
2019 ◽  
pp. 1424-1455
Author(s):  
Hooi Ling Ho

Xylanases are inducible enzymes responsible for the complete hydrolysis of xylan into xylose. Both solid state fermentation (SsF) and submerged fermentation (SmF) are used in the production of xylanase. SsF has become a popular approach due to its economic value. In fact, higher biomass and lower protein breakdown are among the factors involved in determining the production of xylanases in SsF. Agricultural extracts which are abundantly available in the environment such as rice bran and wheat bran are commonly used as the potential carbon source in xylanases production. Xylanase is indeed one of the valuable enzymes which show immense potential in vast industrial applications. The demand for xylanase is increasing because of its prodigious utilization in pulp and paper, bakery, food and beverage, detergents, textile, and animal feed. Xylanase has therefore become one of the important commercial enzymes in recent years.


PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8792 ◽  
Author(s):  
Ahmad Raza ◽  
Ratnasri Pothula ◽  
Heba Abdelgaffar ◽  
Saira Bashir ◽  
Juan Luis Jurat-Fuentes

Background The identification and characterization of novel β-glucosidase genes has attracted considerable attention because of their valuable use in a variety of industrial applications, ranging from biofuel production to improved digestibility of animal feed. We previously isolated a fiber-degrading strain of Bacillus tequelensis from buffalo dung samples, and the goal of the current work was to identify β-glucosidase genes in this strain. We describe the cloning and expression of a new β-glucosidase gene (Bteqβgluc) from Bacillus tequelensis strain BD69 in bacterial and yeast hosts. The recombinant Bteqβgluc were used to characterize specificity and activity parameters, and candidate active residues involved in hydrolysis of different substrates were identified through molecular docking. Methods The full length Bteqβgluc gene was cloned and expressed in Escherichia coli and Pichia pastoris cultures. Recombinant Bteqβgluc proteins were purified by immobilized metal affinity or anion exchange chromatography and used in β-glucosidase activity assays measuring hydrolysis of ρ-nitrophenyl-β-D-glucopyranoside (pNPG). Activity parameters were determined by testing relative β-glucosidase activity after incubation under different temperature and pH conditions. Candidate active residues in Bteqβgluc were identified using molecular operating environment (MOE) software. Results The cloned Bteqβgluc gene belongs to glycoside hydrolase (GH) family 4 and encoded a 54.35 kDa protein. Specific activity of the recombinant β-glucosidase was higher when expressed in P. pastoris (1,462.25 U/mg) than in E. coli (1,445.09 U/mg) hosts using same amount of enzyme. Optimum activity was detected at pH 5 and 50 °C. The activation energy (Ea) was 44.18 and 45.29 kJ/mol for Bteqβgluc produced by P. pastoris and E. coli, respectively. Results from other kinetic parameter determinations, including pKa for the ionizable groups in the active site, Gibbs free energy of activation (ΔG‡), entropy of activation (ΔS‡), Michaelis constant (Km) and maximum reaction velocity (Vmax) for pNPG hydrolysis support unique kinetics and functional characteristics that may be of interest for industrial applications. Molecular docking analysis identified Glu, Asn, Phe, Tyr, Thr and Gln residues as important in protein-ligand catalytic interactions.


Crystals ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 597 ◽  
Author(s):  
Changsuk Oh ◽  
T. Doohun Kim ◽  
Kyeong Kyu Kim

Carboxylic ester hydrolases (CEHs), which catalyze the hydrolysis of carboxylic esters to produce alcohol and acid, are identified in three domains of life. In the Protein Data Bank (PDB), 136 crystal structures of bacterial CEHs (424 PDB codes) from 52 genera and metagenome have been reported. In this review, we categorize these structures based on catalytic machinery, structure and substrate specificity to provide a comprehensive understanding of the bacterial CEHs. CEHs use Ser, Asp or water as a nucleophile to drive diverse catalytic machinery. The α/β/α sandwich architecture is most frequently found in CEHs, but 3-solenoid, β-barrel, up-down bundle, α/β/β/α 4-layer sandwich, 6 or 7 propeller and α/β barrel architectures are also found in these CEHs. Most are substrate-specific to various esters with types of head group and lengths of the acyl chain, but some CEHs exhibit peptidase or lactamase activities. CEHs are widely used in industrial applications, and are the objects of research in structure- or mutation-based protein engineering. Structural studies of CEHs are still necessary for understanding their biological roles, identifying their structure-based functions and structure-based engineering and their potential industrial applications.


2021 ◽  
Vol 20 (1) ◽  
Author(s):  
Zhenyu Zhang ◽  
Pengfu Liu ◽  
Weike Su ◽  
Huawei Zhang ◽  
Wenqian Xu ◽  
...  

AbstractTrans-4-hydroxy-l-proline is an important amino acid that is widely used in medicinal and industrial applications, particularly as a valuable chiral building block for the organic synthesis of pharmaceuticals. Traditionally, trans-4-hydroxy-l-proline is produced by the acidic hydrolysis of collagen, but this process has serious drawbacks, such as low productivity, a complex process and heavy environmental pollution. Presently, trans-4-hydroxy-l-proline is mainly produced via fermentative production by microorganisms. Some recently published advances in metabolic engineering have been used to effectively construct microbial cell factories that have improved the trans-4-hydroxy-l-proline biosynthetic pathway. To probe the potential of microorganisms for trans-4-hydroxy-l-proline production, new strategies and tools must be proposed. In this review, we provide a comprehensive understanding of trans-4-hydroxy-l-proline, including its biosynthetic pathway, proline hydroxylases and production by metabolic engineering, with a focus on improving its production.


Sensors ◽  
2021 ◽  
Vol 21 (10) ◽  
pp. 3494
Author(s):  
Jakub Lev ◽  
Václav Křepčík ◽  
Egidijus Šarauskis ◽  
František Kumhála

Moisture content is one of the most important parameters related to the quality of wood chips that affects both the calorific and economic value of fuel chips. For industrial applications, moisture content needs to be detected quickly. For this purpose, various indirect moisture content measurement methods (e.g., capacitance, NIR, microwave, ECT, X-ray CT, and nuclear MR) have been investigated with different results in the past. Nevertheless, determining wood chip moisture content in real time is still a challenge. The main aim of this article was therefore to analyze the dielectric properties of wood chips at low frequencies (10 kHz–5 MHz) and to examine the possibility of using these properties to predict wood chip moisture content and porosity. A container-type probe was developed for this purpose. The electrical capacitance and dissipation factor of wood chips with different moisture content was measured by an LCR meter at 10 kHz, 50 kHz, 100 kHz, 500 kHz, 1 MHz, and 5 MHz frequencies. Wood chip porosity was also measured using a gas displacement method. Linear models for moisture content and porosity prediction were determined by backward stepwise linear regression. Mathematical model was developed to better understand the physical relationships between moisture content, porosity, and electrical capacitance. These models were able to predict the moisture content of observed quantities of wood chips with the required accuracy (R2 = 0.9−0.99). This finding opens another path to measuring the moisture content and porosity of wood chips in a relatively cheap and fast way and with adequate precision. In addition, principal component analysis showed that it is also possible to distinguish between individual wood chip fraction sizes from the information obtained.


1999 ◽  
Vol 30 (3) ◽  
pp. 265-271 ◽  
Author(s):  
Rubens Cruz ◽  
Vinícius D'Arcádia Cruz ◽  
Juliana Gisele Belote ◽  
Marcelo de Oliveira Khenayfes ◽  
Claudia Dorta ◽  
...  

<FONT FACE="Symbol">b</font>-Galactosidase or <FONT FACE="Symbol">b</font>-D-galactoside-galactohydrolase (EC. 3.2.1.23) is an important enzyme industrially used for the hydrolysis of lactose from milk and milk whey for several applications. Lately, the importance of this enzyme was enhanced by its galactosyltransferase activity, which is responsible for the synthesis of transgalactosylated oligosaccharides (TOS) that act as functional foods, with several beneficial effects on consumers. Penicillium simplicissimum, a strain isolated from soil, when grown in semi-solid medium showed good productivity of <FONT FACE="Symbol">b</font>-galactosidase with galactosyltransferase activity. The optimum pH for hydrolysis was in the 4.04.6 range and the optimum pH for galactosyltransferase activity was in the 6.07.0 range. The optimum temperature for hydrolysis and transferase activity was 55-60°C and 50°C, respectively, and the enzyme showed high thermostability for the hydrolytic activity. The enzyme showed a potential for several industrial applications such as removal of 67% of the lactose from milk and 84% of the lactose from milk whey when incubated at their original pH (4.5 and 6.34, respectively) under optimum temperature conditions. When incubated with a 40% lactose solution in 150 mM McIlvaine buffer, pH 4.5, at 55°C the enzyme converted 86.5% of the lactose to its component monosaccharides. When incubated with a 60% lactose solution in the same buffer but at pH 6.5 and 50°C, the enzyme can synthetize up to 30.5% TOS, with 39.5% lactose and 30% monosaccharides remaining in the preparation.


2020 ◽  
Vol 3 (1) ◽  
pp. 82
Author(s):  
Siti Aimah ◽  
Nawal Ika Susanti ◽  
Lely Ana Ferawati Ekaningsih

Tegalharjo village is a village in Glenmore sub-district, Banyuwangi district, which has a very large plantation area with a variety of plants. One of the plants that thrives on plantations and people's homes is the cassava tree. But the use of cassava as a village's potential to improve the economy of citizens is less than optimal. Cassava is generally left to rot in the trees, sometimes sold cheaply with a maximum price of Rp 3.000.00 a kilo gram and even ironically it is only used as animal feed. Meanwhile the majority of housewives only depend on the family economy for their husbands' work as farmers, farm laborers, very few who are self-employed and plantation labour majority. Seeing this, there needs to be innovations that can increase the economic value of cassava. One of them by processing cassava into brownies. After being processed into brownies, the selling value automatically increases from a kilo of Rp 3.000,00 to Rp 10,000.00 in a package. This innovation was carried out by the service team through mentoring activities and training in making Brownies of Cassava.


Author(s):  
Mohamad Satori ◽  
Ivan Chofyan ◽  
Yuliadi Yuliadi ◽  
Otong Rukmana ◽  
Ira Ayu Wulandari ◽  
...  

Organic waste is the largest composition of waste generated by the people of Indonesia, which is around 50-60%. This type of waste, especially food waste, is easy to smell if it is stored for too long so that it has the potential to pollute the environment. On the other hand, organic waste has good nutrients that can be generated, including through BSF (Black Soldier Fly) maggot bioconversion treatment. The BSF maggot bioconversion method is a method of processing organic waste which is carried out by converting organic matter into other products that are useful and have added value by utilizing biological processes from microorganisms and enzymes. Organic waste treatment with this method is generally carried out on a community-based basis and is integrated with the development of agriculture, fisheries and animal husbandry, because maggot cultivation produces commodities of economic value such as compost and maggot larvae. Compost contains very good nutrients so that it can be used for organic farming and maggot contains high protein that can be used for animal feed and fisheries. The implementation of this program was piloted in the boarding school community, namely the Az-Zakaria Islamic Boarding School which is managed by the Az-Zakaria Islamic Education Foundation (YPI) in Sindangbarang Village, Jalaksana District, Kuningan Regency. The result of this implementation is the formation of a new group of entrepreneurs engaged in the cultivation and utilization of BSF maggots.


Agronomy ◽  
2018 ◽  
Vol 8 (8) ◽  
pp. 151
Author(s):  
Cassyo de Araujo Rufino ◽  
Jucilayne Fernandes-Vieira ◽  
Jesús Martín-Gil ◽  
José Abreu Júnior ◽  
Lizandro Tavares ◽  
...  

Maize is an important food staple in many countries, and is useful in animal feed and many industrial applications. Its productivity is highly sensitive to drought stress, which may occur at any period during its growth cycle. The objective of this work was to compare the water stress influence on the performance of different maize genotypes in critical vegetative stages. Four genotypes of maize (namely a single-cross hybrid (AG 9045), a double-cross hybrid (AG 9011), a triple-cross hybrid (AG 5011), and a variety (AL Bandeirante)) were subjected to a 10-day period without irrigation in the vegetative stages that determine the number of kernel rows and the plant’s ability to take up nutrients and water (V4, V6 and V8). The impact of low water availability was assessed by analyzing plant height, height of the first ear insertion, stem diameter, yield per plant, and number of rows per ear, evincing that the yield per plant was the most sensitive parameter in all the stages. With regard to the influence of the genotype, the single-cross hybrid was demonstrated to be the most resilient to water shortage.


Author(s):  
Amritha Govindrao Kulkarni ◽  
Ankala Bassappa Vedamurthy

Cellulose is the most abundant polymer in plants and the microbial conversion of cellulose is a subject of active research. Currently, cellulase is commonly used in many industrial applications, especially in animal feed, textile, waste water, brewing and wine making. A challenging strategy for the efficient utilization of this renewable resource is to use it as a base material for the production of desired metabolites. This chapter therefore focuses on exploring the cellulase producing bacteria and optimizing the parameters for the enzyme cellulase under varied conditions. Cellulolytic bacteria can be exploited for cellulase production which serves wide applications in industries, pharmaceuticals and further, use of these CDB as bio-inoculants can be incorporated to enhance organic matter decomposition in soil to increase soil fertility and to minimize the fertilizer application. It finds wide applications in reducing the environmental pollution and promote sustainable agriculture.


Sign in / Sign up

Export Citation Format

Share Document