Enabling Technologies for Pervasive Computing

Author(s):  
J. Kleinschmidt

Bluetooth (Bluetooth SIG, 2004) and ZigBee (ZigBee Alliance, 2004) are short-range radio technologies designed for wireless personal area networks (WPANs), where the devices must have low power consumption and require little infrastructure to operate, or none at all. These devices will enable many applications of mobile and pervasive computing. Bluetooth is the IEEE 802.15.1 (2002) standard and focuses on cable replacement for consumer devices and voice applications for medium data rate networks. ZigBee is the IEEE 802.15.4 (2003) standard for low data rate networks for sensors and control devices. The IEEE defines only the physical (PHY) and medium access control (MAC) layers of the standards (Baker, 2005). Both standards have alliances formed by different companies that develop the specifications for the other layers, such as network, link, security, and application. Although designed for different applications, there exists some overlap among these technologies, which are both competitive and complementary. This article makes a comparison of the two standards, addressing the differences, similarities, and coexistence issues. Some research challenges are described, such as quality of service, security, energy-saving methods and protocols for network formation, routing, and scheduling.

2009 ◽  
pp. 1037-1043
Author(s):  
João Henrique Kleinschmidt ◽  
Walter Cunha Borelli

Bluetooth (Bluetooth SIG, 2004) and ZigBee (ZigBee Alliance, 2004) are short-range radio technologies designed for wireless personal area networks (WPANs), where the devices must have low power consumption and require little infrastructure to operate, or none at all. These devices will enable many applications of mobile and pervasive computing. Bluetooth is the IEEE 802.15.1 (2002) standard and focuses on cable replacement for consumer devices and voice applications for medium data rate networks. ZigBee is the IEEE 802.15.4 (2003) standard for low data rate networks for sensors and control devices. The IEEE defines only the physical (PHY) and medium access control (MAC) layers of the standards (Baker, 2005). Both standards have alliances formed by different companies that develop the specifications for the other layers, such as network, link, security, and application. Although designed for different applications, there exists some overlap among these technologies, which are both competitive and complementary. This article makes a comparison of the two standards, addressing the differences, similarities, and coexistence issues. Some research challenges are described, such as quality of service, security, energy-saving methods and protocols for network formation, routing, and scheduling.


2021 ◽  
Author(s):  
Sukhvinder Singh Bamber ◽  
Naveen Dogra ◽  
Mohit Angurala

Abstract Different applications of Wireless Sensor Networks (WSNs) have different expectations from the working of Medium Access Control (MAC) protocols. Some value reliability more than delay incurred while some demand a fair trade-off for the factors like: Throughput, Bit Error Rate (BER) etc. This paper evaluates the performance of Wireless Personal Area Networks (WPANs) from 802.15.4 group for WSNs with modified algorithm which helps in reducing the Medium Access Delay and Delay in reaching of the packet from one end to another end. In this paper certain modifications to existing algorithm have been proposed for reducing the Medium Access Delay and to reduce the number of packets dropped. The result comparisons on the performance parameters like: network output load, generated acknowledged traffic, media access delay, battery consumed and delay in packet transmission from one end to another end that the back-off number & exponent values used for transmission play vital role for improving the performance of WSNs as they directly affect the number of packets dropped, successfully acknowledged and Medium Access Delay.


2018 ◽  
Vol 11 (1) ◽  
pp. 78 ◽  
Author(s):  
Yasmin M. Amin ◽  
Amr T. Abdel-Hamid

The IEEE 802.15.4 standard defines the PHY and MAC layer specifications for Low-Rate Wireless Personal Area Networks (LR-WPANs). With the proliferation of many time-critical applications with real-time delivery, low latency, and/or specific bandwidth requirements, Guaranteed Time Slots (GTS) are increasingly being used for reliable contention-free data transmission by nodes within beacon-enabled WPANs. To evaluate the performance of the 802.15.4 GTS management scheme, this paper introduces a new GTS simulation model for OMNeT++ / MiXiM. Our GTS model considers star-topology WPANs within the 2.4 GHz frequency band, and is in full conformance with the IEEE 802.15.4 – 2006 standard. To enable thorough investigation of the behaviors and impacts of different attacks against the 802.15.4 GTS mechanism, a new GTS attacks simulation model for OMNeT++ is also introduced in this paper. Our GTS attacks model is developed for OMNeT++ / NETA, and is integrated with our GTS model to provide a single inclusive OMNeT++ simulation model for both the GTS mechanism and all known-to-date attacks against it.


2021 ◽  
Author(s):  
Vida Azimi

Machine-to-Machine communication (M2M) refers to automated applications executing on smart devices or machines that communicate through a network with little or no human intervention at all. By enabling smart devices to communicate directly with one another, M2M communications technology has the potential to radically change the world around us and the way that we interact with objects. Many applications can benefit from M2M communications, such as transportation, health care, smart energy production, transmission, and distribution, logistics, city automation and manufacturing, security and safety, and others. This work describes an approach to implement M2M communications using the well-known IEEE 802.15.4 / ZigBee communications standard for low data rate wireless personal area networks. In order to achieve better performance for M2M traffic, we propose some improvements in the protocol. Our simulation results confirm the validity


Author(s):  
Zahia Bidai ◽  
Moufida Maimour ◽  
Hafid Haffaf

Wireless Multimedia Sensor Networks (WMSNs) are one of the most challenging applications of WSN. They require large amounts of data to be transmitted with high reporting rates which consume an order of magnitude of resources, such as storage, computation, bandwidth, and energy. On the other hand, the ZigBee standard was originally specified for low data rate, low power consumption, and low cost wireless personal area networks (WPANs), making it suitable to WSN. However, handling high data rate applications, such as video surveillance in WPANs, is a challenge. Simultaneous multipath routing is one solution to increase the available bandwidth in a ZigBee network. In this paper, we proposed Z-MHTR (ZigBee Multipath Hierarchical Tree Routing), a node disjoint multipath routing extension of the ZigBee tree routing protocol in cluster-tree WSNs. Extensive simulations were performed and showed that the propsed multipath routing enhances application performance in terms of packet delivery ratio, end to end delay, and network lifetime even under heavy data rates.


Sign in / Sign up

Export Citation Format

Share Document