The Role of Neural Networks and Metaheuristics in Agile Software Development Effort Estimation

2022 ◽  
pp. 306-328
Author(s):  
Anupama Kaushik ◽  
Devendra Kumar Tayal ◽  
Kalpana Yadav

In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.

2022 ◽  
pp. 947-969
Author(s):  
Anupama Kaushik ◽  
Devendra Kumar Tayal ◽  
Kalpana Yadav

In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.


Author(s):  
Anupama Kaushik ◽  
Devendra Kumar Tayal ◽  
Kalpana Yadav

In any software development, accurate estimation of resources is one of the crucial tasks that leads to a successful project development. A lot of work has been done in estimation of effort in traditional software development. But, work on estimation of effort for agile software development is very scant. This paper provides an effort estimation technique for agile software development using artificial neural networks (ANN) and a metaheuristic technique. The artificial neural networks used are radial basis function neural network (RBFN) and functional link artificial neural network (FLANN). The metaheuristic technique used is whale optimization algorithm (WOA), which is a nature-inspired metaheuristic technique. The proposed techniques FLANN-WOA and RBFN-WOA are evaluated on three agile datasets, and it is found that these neural network models performed extremely well with the metaheuristic technique used. This is further empirically validated using non-parametric statistical tests.


Biomolecules ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 500
Author(s):  
László Keresztes ◽  
Evelin Szögi ◽  
Bálint Varga ◽  
Viktor Farkas ◽  
András Perczel ◽  
...  

The amyloid state of proteins is widely studied with relevance to neurology, biochemistry, and biotechnology. In contrast with nearly amorphous aggregation, the amyloid state has a well-defined structure, consisting of parallel and antiparallel β-sheets in a periodically repeated formation. The understanding of the amyloid state is growing with the development of novel molecular imaging tools, like cryogenic electron microscopy. Sequence-based amyloid predictors were developed, mainly using artificial neural networks (ANNs) as the underlying computational technique. From a good neural-network-based predictor, it is a very difficult task to identify the attributes of the input amino acid sequence, which imply the decision of the network. Here, we present a linear Support Vector Machine (SVM)-based predictor for hexapeptides with correctness higher than 84%, i.e., it is at least as good as the best published ANN-based tools. Unlike artificial neural networks, the decisions of the linear SVMs are much easier to analyze and, from a good predictor, we can infer rich biochemical knowledge. In the Budapest Amyloid Predictor webserver the user needs to input a hexapeptide, and the server outputs a prediction for the input plus the 6 × 19 = 114 distance-1 neighbors of the input hexapeptide.


Metals ◽  
2020 ◽  
Vol 11 (1) ◽  
pp. 18
Author(s):  
Rahel Jedamski ◽  
Jérémy Epp

Non-destructive determination of workpiece properties after heat treatment is of great interest in the context of quality control in production but also for prevention of damage in subsequent grinding process. Micromagnetic methods offer good possibilities, but must first be calibrated with reference analyses on known states. This work compares the accuracy and reliability of different calibration methods for non-destructive evaluation of carburizing depth and surface hardness of carburized steel. Linear regression analysis is used in comparison with new methods based on artificial neural networks. The comparison shows a slight advantage of neural network method and potential for further optimization of both approaches. The quality of the results can be influenced, among others, by the number of teaching steps for the neural network, whereas more teaching steps does not always lead to an improvement of accuracy for conditions not included in the initial calibration.


Sign in / Sign up

Export Citation Format

Share Document