Data and Communication Infrastructure in Smart Grids

2022 ◽  
pp. 380-407
Author(s):  
Abdelmadjid Recioui ◽  
Youcef Grainat

The communication infrastructure constitutes the key element in smart grids. There have been great advances to enhance the way data is communicated among the different smart grid applications. The aim of this chapter is to present the data communication part of the smart grid with some pioneering developments in this topic. A succinct review of the state of art projects to improve the communication link is presented. An illustrative simulation using LABVIEW is included with a proposed idea of introducing some newly technologies involved in the current and future generations of wireless communication systems.

Author(s):  
Abdelmadjid Recioui ◽  
Youcef Grainat

The communication infrastructure constitutes the key element in smart grids. There have been great advances to enhance the way data is communicated among the different smart grid applications. The aim of this chapter is to present the data communication part of the smart grid with some pioneering developments in this topic. A succinct review of the state of art projects to improve the communication link is presented. An illustrative simulation using LABVIEW is included with a proposed idea of introducing some newly technologies involved in the current and future generations of wireless communication systems.


2017 ◽  
Vol 2 (3) ◽  
pp. 162-179
Author(s):  
Afaf Saoud ◽  
A. RECIOUI

Smart Grids require a complex two-way communication infrastructure, sustaining power flows between intelligent components, and sophisticated computing and information technologies, as well as business applications. Data will flow over generation, transmission, distribution, and user networks in the SG. The amount of data generated by smart devices will experience explosive growth in the future. This tremendous data amount places considerable load on the communications infrastructure of the SG. This paper highlights a review on the smart grid focusing on the communication infrastructure and the data issues. A scan of the most contributions relevant to the topic is presented. The key opportunities and challenges of the communication part of the smart grid are presented for further research.


Author(s):  
Adnan Rashid ◽  
Osman Hasan

Smart grids provide a digital upgradation of the conventional power grids by alleviating the power outages and voltage sags that occur due to their inefficient communication technologies and systems. They mainly tend to strengthen the efficiency, performance, and reliability of the traditional grids by establishing a trusted communication link between their different components through routing protocols. The conventional methods, i.e., the computer-based simulations and net testing, for analyzing these routing network protocols are error-prone and thus cannot be relied upon while analyzing the safety-critical smart grid systems. Formal methods can cater for the above-mentioned inaccuracies and thus can be very beneficial in analyzing communication protocols used in smart grids. In order to demonstrate the utilization and effectiveness of formal methods in analyzing smart grid routing protocols, we use the UPPAAL model checker to formally model the ZigBee-based routing protocol. We also verify some of its properties, such as, liveness, collision avoidance and deadlock freeness.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6269
Author(s):  
Ibrahim Alotaibi ◽  
Mohammed A. Abido ◽  
Muhammad Khalid ◽  
Andrey V. Savkin

The smart grid is an unprecedented opportunity to shift the current energy industry into a new era of a modernized network where the power generation, transmission, and distribution are intelligently, responsively, and cooperatively managed through a bi-directional automation system. Although the domains of smart grid applications and technologies vary in functions and forms, they generally share common potentials such as intelligent energy curtailment, efficient integration of Demand Response, Distributed Renewable Generation, and Energy Storage. This paper presents a comprehensive review categorically on the recent advances and previous research developments of the smart grid paradigm over the last two decades. The main intent of the study is to provide an application-focused survey where every category and sub-category herein are thoroughly and independently investigated. The preamble of the paper highlights the concept and the structure of the smart grids. The work presented intensively and extensively reviews the recent advances on the energy data management in smart grids, pricing modalities in a modernized power grid, and the predominant components of the smart grid. The paper thoroughly enumerates the recent advances in the area of network reliability. On the other hand, the reliance on smart cities on advanced communication infrastructure promotes more concerns regarding data integrity. Therefore, the paper dedicates a sub-section to highlight the challenges and the state-of-the-art of cybersecurity. Furthermore, highlighting the emerging developments in the pricing mechanisms concludes the review.


The proposed smart grid infrastructure aims to make use of the existing public networks such as internet for data communication between consumer premises to the public power utility network. The smart-grid adopts smart-meters which basically collect vast amount of data to provide a holistic view of the connected load behavior and preferences pattern related to power and water consumption. The smart-grids provide benefits to the utilities and consumers alike. For utilities the benefits are real time data collection, ease of power management, and reduced personnel requirement. The benefits for the users on the other hand include availability of real time usage data, providing information on ways to minimize power consumption, monetary savings and so on. Since, the smart-grid uses existing public networks the utilities do not have the burden of installing any new infrastructure (except for installing the smart-meters), thus an added advantage. But, the downside of using the public network is susceptibility to a variety of network attacks, if not guarded well against. This paper talks about the various network security vulnerabilities that exist and the measures to patch the same before employing in the smart grid networks.


2020 ◽  
pp. 45-64
Author(s):  
Nazmus S. Nafi ◽  
Khandakar Ahmed ◽  
Mark A. Gregory

In a smart grid machine to machine communication environment, the separation of the control and data planes in the Software Defined Networking (SDN) paradigm increases flexibility, controllability and manageability of the network. A fully integrated SDN based WSN network can play a more prominent role by providing ‘last mile' connectivity while serving various Smart Grid applications and offer improved security, guaranteed Quality of Service and flexible interworking capabilities. Hence, more efforts are required to explore the potential role of SDN in Smart Grid communications and thereby ensure its optimum utilization. In this chapter we provide a description of how SDN technology can be used in WSN with an emphasis on its end-to-end network architecture. We then present its novel application to Advanced Metering Infrastructure, Substation Automation, Distributed Energy Resources, Wide Area Measurement Systems, and Roaming of Electric Vehicles in Smart Grids.


2013 ◽  
Vol 732-733 ◽  
pp. 1288-1291
Author(s):  
Zhong Wei Sun ◽  
Tao Jia

A robust communication infrastructure, which consists of different network components, such as Home Area Networks (HANs), Feighborhood Area Networks (FANs) and Wide Area Networks (WANs), is the touchstone of a smart grid. However, the existing communications network is insufficient due to the factor that it does not cover the distribution side where the major changes are expected to occur. Field area networks form the communication facility for the electricity distribution systems and act as a bridge between customer premises and substations with collectors, access points and data concentrators. This paper focuses on design aspect of communication system for FANs of smart grid. The communication infrastructure using Ethernet Passive Optical Networks (EPONs) is discussed. And based on the power system applications operating in the distribution domain, communication systems for field based application are presented.


Energies ◽  
2021 ◽  
Vol 14 (10) ◽  
pp. 2818
Author(s):  
Christos-Minas Mathas ◽  
Costas Vassilakis ◽  
Nicholas Kolokotronis ◽  
Charilaos C. Zarakovitis ◽  
Michail-Alexandros Kourtis

The 5G communication network will underpin a vast number of new and emerging services, paving the way for unprecedented performance and capabilities in mobile networks. In this setting, the Internet of Things (IoT) will proliferate, and IoT devices will be included in many 5G application contexts, including the Smart Grid. Even though 5G technology has been designed by taking security into account, design provisions may be undermined by software-rooted vulnerabilities in IoT devices that allow threat actors to compromise the devices, demote confidentiality, integrity and availability, and even pose risks for the operation of the power grid critical infrastructures. In this paper, we assess the current state of the vulnerabilities in IoT software utilized in smart grid applications from a source code point of view. To that end, we identified and analyzed open-source software that is used in the power grid and the IoT domain that varies in characteristics and functionality, ranging from operating systems to communication protocols, allowing us to obtain a more complete view of the vulnerability landscape. The results of this study can be used in the domain of software development, to enhance the security of produced software, as well as in the domain of automated software testing, targeting improvements to vulnerability detection mechanisms, especially with a focus on the reduction of false positives.


Sign in / Sign up

Export Citation Format

Share Document