Can LTE-A Support Real-Time Smart Meter Traffic in the Smart Grid?

2022 ◽  
pp. 529-550
Author(s):  
Elias Yaacoub

The chapter investigates the scheduling load added on a long-term evolution (LTE) and/or LTE-Advanced (LTEA) network when automatic meter reading (AMR) in advanced metering infrastructures (AMI) is performed using internet of things (IoT) deployments of smart meters in the smart grid. First, radio resource management algorithms to perform dynamic scheduling of the meter transmissions are proposed and shown to allow the accommodation of a large number of smart meters within a limited coverage area. Then, potential techniques for reducing the signaling load between the meters and base stations are proposed and analyzed. Afterwards, advanced concepts from LTE-A, namely carrier aggregation (CA) and relay stations (RSs) are investigated in conjunction with the proposed algorithms in order to accommodate a larger number of smart meters without disturbing cellular communications.

Author(s):  
Elias Yaacoub

The chapter investigates the scheduling load added on a long-term evolution (LTE) and/or LTE-Advanced (LTEA) network when automatic meter reading (AMR) in advanced metering infrastructures (AMI) is performed using internet of things (IoT) deployments of smart meters in the smart grid. First, radio resource management algorithms to perform dynamic scheduling of the meter transmissions are proposed and shown to allow the accommodation of a large number of smart meters within a limited coverage area. Then, potential techniques for reducing the signaling load between the meters and base stations are proposed and analyzed. Afterwards, advanced concepts from LTE-A, namely carrier aggregation (CA) and relay stations (RSs) are investigated in conjunction with the proposed algorithms in order to accommodate a larger number of smart meters without disturbing cellular communications.


Author(s):  
Ana E. Goulart ◽  
Abhijeet Sahu

Wireless access technologies are being embedded in utility meters, health devices, public safety systems, among others. These devices have low processing power and communicate at low data rates. New communication standards are being developed to support these machine-type communications (MTC), such as Cellular Internet of Things (CIoT), which is being developed by the third generation partnership project (3GPP). CIoT introduces cooperative ultra-narrow band (C-UNB) communications. It supports ad-hoc uplink transmissions, delay-tolerant downlink transmissions, and a simple authentication scheme. The C-UNB approach is proposed for Mobile Autonomous Reporting (MAR) applications, but it is not clear if it can be used for smart grid systems, such as sensors and smart meters in the Advanced Metering Infrastructure (AMI). In this paper, the authors review the C-UNB approach, study its performance in terms of collision rate and throughput, and discuss its potential for smart grid reporting applications.


2020 ◽  
pp. 1025-1041
Author(s):  
Ana E. Goulart ◽  
Abhijeet Sahu

Wireless access technologies are being embedded in utility meters, health devices, public safety systems, among others. These devices have low processing power and communicate at low data rates. New communication standards are being developed to support these machine-type communications (MTC), such as Cellular Internet of Things (CIoT), which is being developed by the third generation partnership project (3GPP). CIoT introduces cooperative ultra-narrow band (C-UNB) communications. It supports ad-hoc uplink transmissions, delay-tolerant downlink transmissions, and a simple authentication scheme. The C-UNB approach is proposed for Mobile Autonomous Reporting (MAR) applications, but it is not clear if it can be used for smart grid systems, such as sensors and smart meters in the Advanced Metering Infrastructure (AMI). In this paper, the authors review the C-UNB approach, study its performance in terms of collision rate and throughput, and discuss its potential for smart grid reporting applications.


2019 ◽  
Vol 8 (2S11) ◽  
pp. 3776-3783

A Smart Grid is the advancement for power matrix with utilization of correspondence innovation with number of powerful meters which are interconnected and two-way data / information flows and has the main goals is to the active participants of consumers to improve quality and reliability of energy usage as for reducing energy consumption and provide increasing reliability as communication between smart meters and consumers. Basically, Smart Grid is working with distributed system manner, and create a network infrastructure as Advanced Metering Infrastructure (AMI) with number of different smart meter. This AMI network includes NAN (Neighbourhood Area Network), have connected with number of smart meters (as wired / wireless) connections with repeater / router as commonly name as Gateway collector which collets the all the consumers information’s and send to the Utility centre. The flow of information as energy usages and power in smart grids is bidirectional which is controlled with the help of software and supporting hardware. Here, with using of Optimized Network Engineering Tools (OPNET) Modeler is one of the most dominant simulation tools for the analysis of communication networks. In this paper, the number of smart meters is connected and create an AMI networks were developed with network parameters which related to different communication as wireless for the compute the different network parameters with respect to the time where data transfer and DDoS attack to the network. The security aspect as detect the DDoS attack to the AMI network and provide a guideline to the future of AMI network where escape strange challenges faced by Distribution companies. Here, in this paper the progressed metering foundation (AMI), which is one of the savvy framework's application regions where make a proving ground and arrangement in the OPNET for assessed the exhibition and power the board model for the framework


2021 ◽  
Vol 10 (1) ◽  
pp. 412-418
Author(s):  
Hasventhran Baskaran ◽  
Abbas M. Al-Ghaili ◽  
Zul- Azri Ibrahim ◽  
Fiza Abdul Rahim ◽  
Saravanan Muthaiyah ◽  
...  

Smart grids are the cutting-edge electric power systems that make use of the latest digital communication technologies to supply end-user electricity, but with more effective control and can completely fill end user supply and demand. Advanced Metering Infrastructure (AMI), the backbone of smart grids, can be used to provide a range of power applications and services based on AMI data. The increased deployment of smart meters and AMI have attracted attackers to exploit smart grid vulnerabilities and try to take advantage of the AMI and smart meter’s weakness. One of the possible major attacks in the AMI environment is False Data Injection Attack (FDIA). FDIA will try to manipulate the user’s electric consumption by falsified the data supplied by the smart meter value in a smart grid system using additive and deductive attack methods to cause loss to both customers and utility providers. This paper will explore two possible attacks, the additive and deductive data falsification attack and illustrate the taxonomy of attack behaviors that results in additive and deductive attacks. This paper contributes to real smart meter datasets in order to come up with a financial impact to both energy provider and end-user.


2013 ◽  
Vol 397-400 ◽  
pp. 1897-1900
Author(s):  
Jian Yang Zhao ◽  
Jing Mei Cheng ◽  
Wei Hong Ding

As an important part of the smart grid, smart meters and advanced metering infrastructures are given the newly missions connected network. Along with Ethernet development smart meters with measurements and networks, meter with BOA can become reality. In this paper a system of smart meter BOA and its smart meter networking has developed. It has real time displays and storage of smart meter data. The system uses a ARM9 (S3C2440) chip with a Linux operation system. Gathering from breaker via RS232, Data are sent to BOA server through named pipes to be displayed on web. At the same time, these data are stored in embed data base SQLite, for feature managements.


Author(s):  
Tsung-Hui Chuang ◽  
Guan-Hong Chen ◽  
Meng-Hsun Tsai ◽  
Chun-Lung Lin

In the LTE-Advanced network, some femtocells are deployed within a macroecell for improving throughput of indoor user equipments (UEs), which are referred to as femtocell UEs (FUEs). Cross-tier interference is an important issue in this deployment, which may significantly impact signal quality between Macrocell Base Stations (MBSs) and Macrocell User Equipments (MUEs), especially for MUEs near the femtocell. To relieve this problem, the Third Generation Partnership Project Long Term Evolution-Advanced (3GPP LTE-Advanced) de<br /> fined the cognitive radio enhanced femtocell to coordinate interference for LTE-Advanced Network. Cognitive radio femtocells have the ability to sense radio environment to obtain radio parameters. In this paper, we investigated the performance of existing schemes based on fractional frequency reuse. Therefore, we proposed a scheme with cognitive radio technology to improve the performance of fractional fre-quency reuse scheme. Simulation results showed that our scheme can effectively enhance average downlink throughput of FUEs as well as the total downlink throughput in LTE-Advanced Networks.


Sensors ◽  
2019 ◽  
Vol 19 (4) ◽  
pp. 909 ◽  
Author(s):  
Taimin Zhang ◽  
Xiaoyu Ji ◽  
Zhou Zhuang ◽  
Wenyuan Xu

As the core component of the smart grid, advanced metering infrastructure (AMI) is responsible for automated billing, demand response, load forecasting, management, etc. The jamming attack poses a serious threat to the AMI communication networks, especially the neighborhood area network where wireless technologies are widely adopted to connect a tremendous amount of smart meters. An attacker can easily build a jammer using a software-defined radio and jam the wireless communications between smart meters and local controllers, causing failures of on-line monitoring and state estimation. Accurate jammer localization is the first step for defending AMIs against jamming attacks. In this paper, we propose JamCatcher, a mobile jammer localization scheme for defending the AMI. Unlike existing jammer localization schemes, which only consider stationary jammers and usually require a high density of anchor nodes, the proposed scheme utilizes a tracker and can localize a mobile jammer with sparse anchor nodes. The time delay of data transmission is also considered, and the jammer localization process is divided into two stages, i.e., far-field chasing stage and near-field capturing stage. Different localization algorithms are developed for each stage. The proposed method has been tested with data from both simulation and real-world experiment. The results demonstrate that JamCatcher outperforms existing jammer localization algorithms with a limited number of anchor nodes in the AMI scenario.


2013 ◽  
Vol 7 (3) ◽  
pp. 626-637
Author(s):  
Huthaifa Al-Jaradat ◽  
Kumbesan Sandrasegaran

Long Term Evolution-Advanced (LTE-Advanced) has been recently submitted by the 3rd Generation Partnership Project (3GPP) to the International Telecommunication Union (ITU) as one of the candidates 4G technologies. LTE-Advanced is expected to outperform its predecessor (i.e. LTE) by providing data rate up to 1Gbps and 500 Mbps in the downlink and uplink directions, respectively, also by supporting higher speed mobility (i.e. 500 km/h). In order to allow such advances in the performance, Radio Resource Management (RRM) must be effectively utilized. This paper studies the technical challenges associated with some of the RRM tasks (including Packet scheduling, interference management and handover control), in addition it presents from the open literature some of the proposed solutions to these technical challenges.


Sign in / Sign up

Export Citation Format

Share Document