Smart Grid Topologies Paving the Way for an Urban Resilient Continuity Management

2022 ◽  
pp. 1335-1359
Author(s):  
Sadeeb Simon Ottenburger ◽  
Thomas Münzberg ◽  
Misha Strittmatter

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures. Thus, topology massively codetermines the degree of urban resilience, i.e. different topologies enable different strategies of power distribution. Therefore, this article introduces a concept of criticality adapted to a power system relying on an advanced metering infrastructure. The authors propose a two-stage operationalization of this concept that refers to the design phase of a smart grid and its operation mode, targeting at an urban resilient power flow during power shortage.

Author(s):  
Sadeeb Simon Ottenburger ◽  
Thomas Münzberg ◽  
Misha Strittmatter

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures. Thus, topology massively codetermines the degree of urban resilience, i.e. different topologies enable different strategies of power distribution. Therefore, this article introduces a concept of criticality adapted to a power system relying on an advanced metering infrastructure. The authors propose a two-stage operationalization of this concept that refers to the design phase of a smart grid and its operation mode, targeting at an urban resilient power flow during power shortage.


Author(s):  
Sadeeb Simon Ottenburger

The generation and supply of electricity is currently about to undergo a fundamental transition that includes extensive development of smart grids. Smart grids are huge and complex networks consisting of a vast number of devices and entities which are connected with each other. This fact opens new variations of disruption scenarios which can increase the vulnerability of a power distribution network. However, the network topology of a smart grid has significant effects on urban resilience particularly referring to the adequate provision of infrastructures whereby the way in which a distribution network is divided into interconnected microgrids is of particular importance. Such decompositions enable the systematic protection of important infrastructures and furthermore allow new forms of resilient power supply avoiding large-scale power blackouts. Therefore, the authors introduce a concept of criticality adapted to a power system relying on an advanced metering infrastructure and thereby propose a metric for an integrated resilience assessment of power distribution networks.


Open Physics ◽  
2018 ◽  
Vol 16 (1) ◽  
pp. 1094-1106 ◽  
Author(s):  
Zhen Li ◽  
Yao Zhang ◽  
Muhammad Aqeel Ashraf

Abstract Distribution network reconfiguration is a very complex and large-scale combinatorial optimization problem. In network reconfiguration, whether an effective solution can be obtained is a key issue. Aiming at the problems in network reconstruction by traditional algorithm, such as long time required, more times of power flow calculation and high network loss, a network optimization design algorithm based on improved ant colony algorithm for high voltage power distribution network is proposed. After analyzing the operating characteristics of the high voltage power distribution network, the network topology of the high voltage power distribution network is described by constructing a hierarchical variable-structure distribution network model. A mathematical model of distribution network reconstruction considering the opportunity constraint with the minimum network loss as the objective function is established. The power flow distribution is calculated by using the pre-push back-generation method combined with the hierarchical structure of the distribution network. The maximum and minimum ant colony algorithm is introduced to improve the pheromone updating method of the traditional ant colony algorithm, and the search range is expanded, so that the algorithm can jump out of the local optimization trap to realize the accurate solution of the power distribution network reconstruction model. The experimental results show that compared with the current network reconstruction algorithm, the proposed algorithm requires less time for convergence, less power flow calculation, and lower network loss.


Energies ◽  
2019 ◽  
Vol 12 (9) ◽  
pp. 1817 ◽  
Author(s):  
Gisliany Alves ◽  
Danielle Marques ◽  
Ivanovitch Silva ◽  
Luiz Affonso Guedes ◽  
Maria da Guia da Silva

Smart grids are a new trend in electric power distribution, which has been guiding the digitization of electric ecosystems. These smart networks are continually being introduced in order to improve the dependability (reliability, availability) and efficiency of power grid systems. However, smart grids are often complex, composed of heterogeneous components (intelligent automation systems, Information and Communication Technologies (ICT) control systems, power systems, smart metering systems, and others). Additionally, they are organized under a hierarchical topology infrastructure demanded by priority-based services, resulting in a costly modeling and evaluation of their dependability requirements. This work explores smart grid modeling as a graph in order to propose a methodology for dependability evaluation. The methodology is based on Fault Tree formalism, where the top event is generated automatically and encompasses the hierarchical infrastructure, redundant features, load priorities, and failure and repair distribution rates of all components of a smart grid. The methodology is suitable to be applied in early design stages, making possible to evaluate instantaneous and average measurements of reliability and availability, as well as to identify eventual critical regions and components of smart grid. The study of a specific use-case of low-voltage distribution network is used for validation purposes.


2014 ◽  
Vol 668-669 ◽  
pp. 749-752 ◽  
Author(s):  
Xiao Yi Zhou ◽  
Ling Yun Wang ◽  
Wen Yue Liang ◽  
Li Zhou

Distributed generation (DG) has an important influence on the voltage of active distribution networks. A unidirectional power distribution network will be transformed into a bidirectional, multiple power supply distribution network after DGs access to the distribution network and the direction of power flow is also changed. Considering the traditional forward and backward substitution algorithm can only deal with the equilibrium node and PQ nodes, so the other types of DGs should be transformed into PQ nodes, then its impact on active distribution network can be analyzed via the forward and backward substitution algorithm. In this paper, the characteristics of active distribution networks are analyzed firstly and a novel approach is proposed to convert PI nodes into PQ nodes. Finally, a novel forward and backward substitution algorithm is adopted to calculate the power flow of the active distribution network with DGs. Extensive validation of IEEE 18 and 33 nodes distribution system indicates that this method is feasible. Numerical results show that when DG is accessed to the appropriate location with proper capacity, it has a significant capability to support the voltages level of distribution system.


2013 ◽  
Vol 373-375 ◽  
pp. 1353-1356
Author(s):  
Bao Li Gui ◽  
Jin Ling Lu ◽  
Qing Jie Zhou ◽  
Ren Min Gong

With the development of our country electric power enterprise, closed-loop pour load operation has become increasingly frequent in power distribution network, the resulting circulation problems affect the safe operation of power grid. The calculation method of system is used by BX type solution fast decomposition method and it is very suitable for distribution integration, by the method we can calculate the steady state current and transient current of closed-loop. It also provide accurate current analysis and control. With analysis of examples, finally indicates that the method can offer good for dispatch staff for closed-loop operation decision support, and it has a certain guiding significance.


2018 ◽  
Vol 7 (2.21) ◽  
pp. 185
Author(s):  
B Rubini ◽  
N Shanmugasundaram ◽  
S Pradeepkumar

Currently, different advanced technologies are implemented in power networks, with aim to improve power quality and reliability of grid operation. Naturally, Distribution Automation and Management Systems (DAMS), Smart power equipment, Advanced Metering Structure, Distributed Energy Resources and/or systems Demand Response are implemented in electricity distribution networks. Smart Grid Solutions coordinate different advanced technologies in an efficient energy management system. Outline Smart Grid Solutions, with investments of estimation, possible benefits and operation costs, is presented in this article, with estimation of cost-effectiveness in a lifetime of particular systems. 


2016 ◽  
Vol 78 (9) ◽  
Author(s):  
Sofana Reka S ◽  
Ramesh V

The deployment of smart meters in distribution systems provides an excellent pathway for load monitoring in the future smart grid paradigm. The proposed methodology involves a novel idea of power distribution optimization from the substation level. This paper elaborates a model by identifying the dynamic intelligent load scheduling problem and the approach is simple with less complexity thereby reducing the power outage time at the end users. This solution can be easily applicable to power distribution network using smart grid concepts and develops a load scheduling architecture. The problem efficiency is explained clearly which enhances the idea when the consumption among users is centrally available and it is easy to generate bills without errors. The main focus of this paper is modelling the loads in consumer side targeting an optimal scheduling .The proposed system is implemented in a realistic scenario and the obtained results exhibits effectiveness of the model.


2020 ◽  
pp. 45-64
Author(s):  
Nazmus S. Nafi ◽  
Khandakar Ahmed ◽  
Mark A. Gregory

In a smart grid machine to machine communication environment, the separation of the control and data planes in the Software Defined Networking (SDN) paradigm increases flexibility, controllability and manageability of the network. A fully integrated SDN based WSN network can play a more prominent role by providing ‘last mile' connectivity while serving various Smart Grid applications and offer improved security, guaranteed Quality of Service and flexible interworking capabilities. Hence, more efforts are required to explore the potential role of SDN in Smart Grid communications and thereby ensure its optimum utilization. In this chapter we provide a description of how SDN technology can be used in WSN with an emphasis on its end-to-end network architecture. We then present its novel application to Advanced Metering Infrastructure, Substation Automation, Distributed Energy Resources, Wide Area Measurement Systems, and Roaming of Electric Vehicles in Smart Grids.


Sign in / Sign up

Export Citation Format

Share Document