Analysis of Gait Flow Image and Gait Gaussian Image Using Extension Neural Network for Gait Recognition

Author(s):  
Parul Arora ◽  
Smriti Srivastava ◽  
Shivank Singhal

This paper proposes a new technique to recognize human gait by combining model free feature extraction approaches and a classifier. Gait flow image (GFI) and gait Gaussian image (GGI) are the two feature extraction techniques used in combination with ENN. GFI is a gait period based technique, uses optical flow features. So it directly focuses on dynamic part of human gait. GGI is another gait period based technique, computed by applying Gaussian membership function on human silhouettes. Next, ENN has been used as a classifier which combines the extension theory and neural networks. All the study has been done on CASIA-A and OU-ISIR treadmill B databases. The results derived using ENN are compared with SVM (support vector machines) and NN (Nearest neighbor) classifiers. ENN proved to give good accuracy and less iteration as compared to other traditional methods.

2016 ◽  
Vol 3 (2) ◽  
pp. 45-64 ◽  
Author(s):  
Parul Arora ◽  
Smriti Srivastava ◽  
Shivank Singhal

This paper proposes a new technique to recognize human gait by combining model free feature extraction approaches and a classifier. Gait flow image (GFI) and gait Gaussian image (GGI) are the two feature extraction techniques used in combination with ENN. GFI is a gait period based technique, uses optical flow features. So it directly focuses on dynamic part of human gait. GGI is another gait period based technique, computed by applying Gaussian membership function on human silhouettes. Next, ENN has been used as a classifier which combines the extension theory and neural networks. All the study has been done on CASIA-A and OU-ISIR treadmill B databases. The results derived using ENN are compared with SVM (support vector machines) and NN (Nearest neighbor) classifiers. ENN proved to give good accuracy and less iteration as compared to other traditional methods.


2020 ◽  
Author(s):  
Hoda Heidari ◽  
Zahra Einalou ◽  
Mehrdad Dadgostar ◽  
Hamidreza Hosseinzadeh

Abstract Most of the studies in the field of Brain-Computer Interface (BCI) based on electroencephalography have a wide range of applications. Extracting Steady State Visual Evoked Potential (SSVEP) is regarded as one of the most useful tools in BCI systems. In this study, different methods such as feature extraction with different spectral methods (Shannon entropy, skewness, kurtosis, mean, variance) (bank of filters, narrow-bank IIR filters, and wavelet transform magnitude), feature selection performed by various methods (decision tree, principle component analysis (PCA), t-test, Wilcoxon, Receiver operating characteristic (ROC)), and classification step applying k nearest neighbor (k-NN), perceptron, support vector machines (SVM), Bayesian, multiple layer perceptron (MLP) were compared from the whole stream of signal processing. Through combining such methods, the effective overview of the study indicated the accuracy of classical methods. In addition, the present study relied on a rather new feature selection described by decision tree and PCA, which is used for the BCI-SSVEP systems. Finally, the obtained accuracies were calculated based on the four recorded frequencies representing four directions including right, left, up, and down.


2020 ◽  
Vol 10 (21) ◽  
pp. 7619
Author(s):  
Jucheol Moon ◽  
Nhat Anh Le ◽  
Nelson Hebert Minaya ◽  
Sang-Il Choi

A person’s gait is a behavioral trait that is uniquely associated with each individual and can be used to recognize the person. As information about the human gait can be captured by wearable devices, a few studies have led to the proposal of methods to process gait information for identification purposes. Despite recent advances in gait recognition, an open set gait recognition problem presents challenges to current approaches. To address the open set gait recognition problem, a system should be able to deal with unseen subjects who have not included in the training dataset. In this paper, we propose a system that learns a mapping from a multimodal time series collected using insole to a latent (embedding vector) space to address the open set gait recognition problem. The distance between two embedding vectors in the latent space corresponds to the similarity between two multimodal time series. Using the characteristics of the human gait pattern, multimodal time series are sliced into unit steps. The system maps unit steps to embedding vectors using an ensemble consisting of a convolutional neural network and a recurrent neural network. To recognize each individual, the system learns a decision function using a one-class support vector machine from a few embedding vectors of the person in the latent space, then the system determines whether an unknown unit step is recognized as belonging to a known individual. Our experiments demonstrate that the proposed framework recognizes individuals with high accuracy regardless they have been registered or not. If we could have an environment in which all people would be wearing the insole, the framework would be used for user verification widely.


Electroencephalographic (EEG) signals are the preferred input for non-invasive Brain-Computer Interface (BCI). Efficient signal processing strategies, including feature extraction and classification, are required to distinguish the underlying task of BCI. This work proposes the optimized common spatial pattern(CSP) filtering technique as the feature extraction method for collecting the spatially spread variation of the signal. The bandpass filter (BPF) designed for this work assures the availability of event-related synchronized (ERS) and event-related desynchronized (ERD) signal as input to the spatial filter. This work takes consideration of the area-specific electrodes for feature formation. This work further proposes a comparative analysis of classifier algorithms for classification accuracy(CA), sensitivity and specificity and the considered algorithms are Support Vector Machine(SVM), Linear Discriminant Analysis(LDA), and K-Nearest Neighbor(KNN). Performance parameters considered are CA, sensitivity, and selectivity, which can judge the method not only for high CA but also inclining towards the particular class. Thus it will direct in the selection of appropriate classifier as well as tuning the classifier to get the balanced results. In this work, CA, the prior performance parameter is obtained to be 88.2% sensitivity of 94.2% and selectivity 82.2% for the cosine KNN classifier. SVM with linear kernel function also gives the comparable results, thus concluding that the robust classifiers perform well for all parameters in case of CSP for feature extraction.


2021 ◽  
Vol 10 (3) ◽  
pp. 202-208
Author(s):  
Azhin Tahir Sabir

Human gait identification is a behavioral biometric technology which can be used to monitor human beings without user interaction. Recent researches are more focused on investigating gait as one of the biometric traits.  Further, gait recognition aims to analyze and identify human behavioral activities and may be implemented in different scenarios including access control and criminal analysis. However, using various techniques in relation to image processing and obtaining better accuracy are remaining challenges. In last decade, Microsoft has introduced the Kinect sensor as an innovative sensor to provide image characteristics, precisely. Therefore, this article uses a Kinect sensor to extract gait characteristics to be used in individual recognition. A set of Triangulated shape are generated as new feature vector and called Triangulated Skeletal Model (TSM). Nearest Neighbor technique is utilized to do the recognition issue based on leave-one-out strategy. The experimental outcomes indicated that the recommended technique provides significant results and outperforms other comparative similar techniques with accuracy of 93.46%.  


2018 ◽  
Vol 30 (2) ◽  
pp. 235-242
Author(s):  
Nooritawati Md Tahir ◽  
◽  
Rohilah Sahak ◽  
Ahmad Ihsan Mohd Yassin ◽  
Fadhlan Hafizhelmi Kamaruzaman

Author(s):  
Soumia Kerrache ◽  
Beladgham Mohammed ◽  
Hamza Aymen ◽  
Kadri Ibrahim

Features extraction is an essential process in identifying person biometrics because the effectiveness of the system depends on it. Multiresolution Analysis success can be used in the system of a person’s identification and pattern recognition. In this paper, we present a feature extraction method for two-dimensional face and iris authentication.  Our approach is a combination of principal component analysis (PCA) and curvelet transform as an improved fusion approach for feature extraction. The proposed fusion approach involves image denoising using 2D-Curvelet transform to achieve compact representations of curves singularities. This is followed by the application of PCA as a fusion rule to improve upon the spatial resolution. The limitations of the only PCA algorithm are a poor recognition speed and complex mathematical calculating load, to reduce these limitations, we are applying the curvelet transform. <br /> To assess the performance of the presented method, we have employed three classification techniques: Neural networks (NN), K-Nearest Neighbor (KNN) and Support Vector machines (SVM).<br />The results reveal that the extraction of image features is more efficient using Curvelet/PCA.


Sign in / Sign up

Export Citation Format

Share Document