scholarly journals A Novel Pixel Merging-Based Lossless Recovery Algorithm for Basic Matrix VSS

Cryptography ◽  
2020 ◽  
pp. 545-555
Author(s):  
Xin Liu ◽  
Shen Wang ◽  
Jianzhi Sang ◽  
weizhe zhang

Lossless recovery in visual secret share (VSS) is very meaningful. In this paper, a novel lossless recovery algorithm for the basic matrix VSS is proposed. The secret image is reconstructed losslessly by using simple exclusive XOR operation and merging pixel. The algorithm not only can apply to the VSS without pixel expansion but also can apply to VSS with pixel expansion. The condition of lossless recovery of a VSS is given by analyzing the XOR all columns of basic matrixes. Simulations are conducted to evaluate the efficiency of the proposed scheme.

2017 ◽  
Vol 9 (3) ◽  
pp. 1-10
Author(s):  
Xin Liu ◽  
Shen Wang ◽  
Jianzhi Sang ◽  
Weizhe Zhang

Lossless recovery in visual secret share (VSS) is very meaningful. In this paper, a novel lossless recovery algorithm for the basic matrix VSS is proposed. The secret image is reconstructed losslessly by using simple exclusive XOR operation and merging pixel. The algorithm not only can apply to the VSS without pixel expansion but also can apply to VSS with pixel expansion. The condition of lossless recovery of a VSS is given by analyzing the XOR all columns of basic matrixes. Simulations are conducted to evaluate the efficiency of the proposed scheme.


2017 ◽  
Vol 77 (13) ◽  
pp. 16461-16476 ◽  
Author(s):  
Xin Liu ◽  
Shen Wang ◽  
Jianzhi Sang ◽  
Weizhe Zhang

Mathematics ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. 234
Author(s):  
Yue Jiang ◽  
Xuehu Yan ◽  
Jianqing Qi ◽  
Yuliang Lu ◽  
Xuan Zhou

A ( k , n ) threshold secret image sharing (SIS) method is proposed to divide a secret image into n shadows. The beauty of this scheme is that one can only reconstruct a secret image with k or more than k shadows, but one cannot obtain any information about the secret from fewer than k shadows. In the ( k , n ) threshold SIS, shadow authentication means the detection and location of manipulated shadows. Traditional shadow authentication schemes require additional bits for authentication; need much information to be public; or need to put each shadow into a host image, utilizing the information hiding technique, which makes the generation, recovery and authentication complexity higher. Besides, most existing schemes work when a dealer participates in recovery. Our contribution is that we propose a SIS method for a ( k , n ) threshold with dealer-participatory and non-dealer-participatory mutual shadow authentication capabilities which integrates polynomial-based SIS and visual secret sharing (VSS) through using the result of VSS to “guide” the polynomial-based SIS by a screening operation. In our scheme, when an authentication image is public, all involved actors (participants and dealer) can mutually authenticate each other by exchange the lowest level plane instead of the whole shadow. Our scheme is suitable for the case with and without a dealer participate recovery. In addition, the proposed scheme has characteristics of low generation and authentication complexity, no pixel expansion, 100% detection rate and lossless recovery.


Author(s):  
CHIN-CHEN CHANG ◽  
KUO-NAN CHEN ◽  
NGOC-TU HUYNH

In this paper, we propose an efficient secret sharing scheme without pixel expansion. The scheme first uses the VQ-compression method to compress a secret image. This allows senders to share a larger secret image than other methods. Moreover, the proposed method also allows participants to reconstruct a lossless secret image. The generated shadows are meaningful with high quality, so the image does not attract any suspicion from attackers. Because the scheme uses XOR operation during the construction and revealing phases, it is suitable for secret sharing applications.


2021 ◽  
Vol 26 (1) ◽  
pp. 135-142
Author(s):  
Kanusu Srinivasa Rao ◽  
Mandapati Sridhar

The current era is mainly focused on secured data transmission and every organization takes preventive measures to protect network’s private data. Among different techniques visual cryptography is a prominent one that that encrypts the visual information and decrypts secret using mechanical operations without any computation, but each share need pixel expansion. In the current work, we propose an Image encryption technique using (n, n) Visual cryptography based on simple operations without pixel expansion. The proposed novel technique gives an image encryption using visual cryptography based on Least significant bit (LSB) technique in spatial domain and parity mechanism using Exclusive-OR(XOR) operation. developed for encrypting grey scale image. Image encryption and decryption uses simple Boolean operations. The technique provides better quality of shares and recovers without any loss.


Mathematics ◽  
2020 ◽  
Vol 8 (9) ◽  
pp. 1452
Author(s):  
Yuyuan Sun ◽  
Yuliang Lu ◽  
Jinrui Chen ◽  
Weiming Zhang ◽  
Xuehu Yan

The (k,n)-threshold Secret Image Sharing scheme (SISS) is a solution to image protection. However, the shadow images generated by traditional SISS are noise-like, easily arousing deep suspicions, so that it is significant to generate meaningful shadow images. One solution is to embed the shadow images into meaningful natural images and visual quality should be considered first. Limited by embedding rate, the existing schemes have made concessions in size and visual quality of shadow images, and few of them take the ability of anti-steganalysis into consideration. In this paper, a meaningful SISS that is based on Natural Steganography (MSISS-NS) is proposed. The secret image is firstly divided into n small-sized shadow images with Chinese Reminder Theorem, which are then embedded into RAW images to simulate the images with higher ISO parameters with NS. In MSISS-NS, the visual quality of shadow images is improved significantly. Additionally, as the payload of cover images with NS is larger than the size of small-sized shadow images, the scheme performs well not only in visual camouflage, but also in other aspects, like lossless recovery, no pixel expansion, and resisting steganalysis.


2018 ◽  
Vol 10 (1) ◽  
pp. 24-39 ◽  
Author(s):  
Hang Gao ◽  
Mengting Hu ◽  
Tiegang Gao ◽  
Renhong Cheng

A novel random grid and reversible watermarking based verifiable secret sharing scheme for outsourcing image in cloud is proposed in the paper. In the proposed scheme, data owner firstly embeds the hash value of the secret image into the secret image itself using reversible watermarking algorithm; then, watermarked image is divided into $n$ sub image. Secondly, the hash of n sub image is calculated, and then the hash value is transformed into the initial value of hyper-chaos, thus n random grids are generated by different hyper-chaos. Lastly, after expanding the sub-image to the same size with the original secret image, it is performer XOR operation with the corresponding random grid, this will accordingly produce $n$ sharing secret. In order to securely outsource the image in the cloud, the generated shares are issued to the $n$ different cloud server. For authorized user, (s)he can get shares from different cloud server, and then can recover the original secret image through a series of decryption operations and extraction of reversible watermarking. The proposed scheme can losslessly restore the original secret image, and have the double verification ability, that is to say, it can verify whether the anyone of the sharing is modified, and it can also verify whether the original secret image is completely reconstructed. Some analysis and comparisons are given to show the security and effectiveness of proposed scheme.


2022 ◽  
Vol 2 ◽  
Author(s):  
Lina Zhou ◽  
Yin Xiao ◽  
Zilan Pan ◽  
Yonggui Cao ◽  
Wen Chen

Visual cryptography (VC) is developed to be a promising approach to encoding secret information using pixel expansion rules. The useful information can be directly rendered based on human vision without the usage of decryption algorithms. However, many VC schemes cannot withstand occlusion attacks. In this paper, a new VC scheme is proposed using binary amplitude-only holograms (AOHs) generated by a modified Gerchberg-Saxton algorithm (MGSA). During the encryption, a secret image is divided into a group of unrecognizable and mutually-unrelated shares, and then the generated shares are further converted to binary AOHs using the MGSA. During image extraction, binary AOHs are logically superimposed to form a stacked hologram, and then the secret image can be extracted from the stacked hologram. Different from conventional VC schemes, the proposed VC scheme converts a secret image into binary AOHs. Due to the redundancy of the generated binary AOHs, the proposed method is numerically and experimentally verified to be feasible and effective, and possesses high robustness against occlusion attacks.


2017 ◽  
Vol 9 (3) ◽  
pp. 28-37
Author(s):  
Lintao Liu ◽  
Yuliang Lu ◽  
Xuehu Yan ◽  
Song Wan

The current researches in secret sharing techniques have limitations of lossy recovery for binary images, complex computation for grayscale images, and “All-or-Nothing”. In this paper, we propose a novel progressive secret image sharing (PSS) scheme based on arithmetic mean. In the proposed scheme, the more shares are collected, the better recovered visual quality will be. Furthermore, it can realize lossless recovery with all the shares. It can be directly used to share grayscale images and can be easily extended to deal with binary and color images. In the recovery process, it only needs simple computing (arithmetic mean). Simulations show the advantages and effectiveness of the proposed scheme.


Sign in / Sign up

Export Citation Format

Share Document