A Comprehensive Review of Blockchain Technology Implementation in the EV Charging Infrastructure

2022 ◽  
pp. 38-67
Author(s):  
Toni Zhimomi ◽  
Mohammad Saad Alam ◽  
Hafiz Malik

Charging infrastructure is a key factor in successful electric vehicle adoption. Charging stations are still a fragmented market in terms of ownership, lack of standards, and charging protocols. The increasing decentralised grid has made energy and communication flow bi-directional. Challenges arise in maintaining the increasing decentralised structure, security, and privacy of the network. Blockchain facilitates the interconnectedness of such a distributed and decentralised network. Blockchain's versatility lies in its transparent and immutable decentralized architecture that enables direct transactions between users without the need of a middleman. It provides powerful safeguards against cyberattacks with its advanced cryptography enabling privacy-preserving authentication. This chapter presents a comprehensive review on the application of blockchain technology in EV charging infrastructure such as facilitating the peer-to-peer energy exchange, increased security and privacy, immutable transactions, and mitigating trust issues among the participants in the charging infrastructure.

Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5441
Author(s):  
Leonidas Anthopoulos ◽  
Polytimi Kolovou

Electro-mobility (EV) is an emerging transportation method, whose charging infrastructure development concerns a key-factor for its growth. EV charging infrastructure has not grown yet in Greece, regardless of the ambitious national targets that have been grounded for 2030 towards a climate-neutral mobility. This study introduces a multi-criteria decision-making (MCDM) framework for EV charging infrastructure deployment and operation, which respects both the economic and the technical aspects for public charging stations. The analytic hierarchy process (AHP) was followed for the MCDM framework’s definition, which used criteria that were in the corresponding literature and performed with interviews by experts from the EV growing market in Greece. The results show that the installation and operation of public EV charging stations, located in private spaces to ensure their protection against vandalism, within the urban areas is the preferred deployment approach. Moreover, this article tests a market model for the EV charging infrastructure ownership and operation. Findings show that the incentive for investment in EV charging infrastructure market in Greece, is driven by the direct investments of limited vendors, while it is not economically oriented, but it focuses on sustainability and environmental protection.


2021 ◽  
Vol 2 (2) ◽  
pp. 1-21
Author(s):  
Hossam ElHussini ◽  
Chadi Assi ◽  
Bassam Moussa ◽  
Ribal Atallah ◽  
Ali Ghrayeb

With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1577
Author(s):  
Shuang Gao ◽  
Jianzhong Wu ◽  
Bin Xu

A considerable market share of electric vehicles (EVs) is expected in the near future, which leads to a transformation from gas stations to EV charging infrastructure for automobiles. EV charging stations will be integrated with the power grid to replace the fuel consumption at the gas stations for the same mobile needs. In order to evaluate the impact on distribution networks and the controllability of the charging load, the temporal and spatial distribution of the charging power is calculated by establishing mapping the relation between gas stations and charging facilities. Firstly, the arrival and parking period is quantified by applying queuing theory and defining membership function between EVs to parking lots. Secondly, the operational model of charging stations connected to the power distribution network is formulated, and the control variables and their boundaries are identified. Thirdly, an optimal control algorithm is proposed, which combines the configuration of charging stations and charging power regulation during the parking period of each individual EV. A two-stage hybrid optimization algorithm is developed to solve the reliability constrained optimal dispatch problem for EVs, with an EV aggregator installed at each charging station. Simulation results validate the proposed method in evaluating the controllability of EV charging infrastructure and the synergy effects between EV and renewable integration.


Energies ◽  
2018 ◽  
Vol 11 (8) ◽  
pp. 1937 ◽  
Author(s):  
Germana Trentadue ◽  
Alexandre Lucas ◽  
Marcos Otura ◽  
Konstantinos Pliakostathis ◽  
Marco Zanni ◽  
...  

Multi-type fast charging stations are being deployed over Europe as electric vehicle adoption becomes more popular. The growth of an electrical charging infrastructure in different countries poses different challenges related to its installation. One of these challenges is related to weather conditions that are extremely heterogeneous due to different latitudes, in which fast charging stations are located and whose impact on the charging performance is often neglected or unknown. The present study focused on the evaluation of the electric vehicle (EV) charging process with fast charging devices (up to 50 kW) at ambient (25 °C) and at extreme temperatures (−25 °C, −15 °C, +40 °C). A sample of seven fast chargers and two electric vehicles (CCS (combined charging system) and CHAdeMO (CHArge de Move)) available on the commercial market was considered in the study. Three phase voltages and currents at the wall socket, where the charger was connected, as well as voltage and current at the plug connection between the charger and vehicle have been recorded. According to SAE (Society of Automotive Engineers) J2894/1, the power conversion efficiency during the charging process has been calculated as the ratio between the instantaneous DC power delivered to the vehicle and the instantaneous AC power supplied from the grid in order to test the performance of the charger. The inverse of the efficiency of the charging process, i.e., a kind of energy return ratio (ERR), has been calculated as the ratio between the AC energy supplied by the grid to the electric vehicle supply equipment (EVSE) and the energy delivered to the vehicle’s battery. The evaluation has shown a varied scenario, confirming the efficiency values declared by the manufacturers at ambient temperature and reporting lower energy efficiencies at extreme temperatures, due to lower requested and, thus, delivered power levels. The lowest and highest power conversion efficiencies of 39% and 93% were observed at −25 °C and ambient temperature (+25 °C), respectively.


2021 ◽  
Author(s):  
Manjush Ganiger ◽  
Maneesh Pandey ◽  
Rahul Wagh ◽  
Rakesh Govindasamy

Abstract Transition towards electric vehicles (EV) is the key enabler for fighting against climate change as well as for sustainable future. However, to build more confidence on EV transition, availability of charging infrastructure is key. One of the important criterions for vehicle charging station is to have a stable electricity source that can meet varying charging demand. The paper attempts to explore the eco-system of self-sustainable and quasi-renewable charging infrastructure. This paper outlines a circular economy model for EV charging station (EVCS) using a gas turbine from the Baker Hughes™ portfolio. The proposed solution includes Solid Oxide Electrolyzer and a carbon capture unit, integrated to the gas turbine. This integrated system is decarbonized using the hydrogen generated by the electrolysis unit. Proposed solution on EVCS can charge about 1500 EVs in half a day of operation (50% power split). Solution is lucrative and has attractive return on investment. The solution here is having high power density, compared to the actual renewable energy dependent charging stations. The solution is flexible to incorporate Power-to-X conversions. Modular nature of the solution makes it easy to implement in city limits as well as in remote locations, along the highways, where grid availability can be challenging.


2022 ◽  
pp. 25-37
Author(s):  
Sanchari Deb ◽  
Sulabh Sachan

The growing concern about fossil energy exhaustion, air pollution, and ecological deprivation has made electric vehicles (EVs) a practical option in contrast to combustion engine-driven vehicles. In any case, driving extent uneasiness is one of the innate inadequacies related with EVs. Massive integration of EV charging load into the power system may be a threat to the distribution network. Spontaneous situation of charging stations in the distribution system and uncoordinated charging will augment the load demand thereby resulting in voltage instability, deterioration of reliability indices, harmonic distortions, and escalated power losses. This chapter will concentrate on breaking down the effect of EV chargers on the working parameters, for example, voltage dependability, unwavering quality, and force misfortune. The examination will be completed on standard test systems. The discoveries of the proposed part will evaluate the effect of EV charging load on the working parameters of the distribution system and help in proposing a framework for charging station planning.


2022 ◽  
pp. 180-199
Author(s):  
Mangesh Manikrao Ghonge ◽  
N. Pradeep ◽  
Renjith V. Ravi ◽  
Ramchandra Mangrulkar

The development of blockchain technology relies on a variety of disciplines, including cryptography, mathematics, algorithms, and economic models. All cryptocurrency transactions are recorded on a digital and decentralized public ledger known as the blockchain. Customers may keep track of their crypto-transactions by looking at a chronological list rather than a centralized ledger. The blockchain's application potential is bright, and it has already produced results. In various fields, blockchain technology has been incorporated and deployed, from the earliest days of cryptocurrencies to the present day with new-age smart contracts. No comprehensive study on blockchain security and privacy has yet been done despite numerous studies in this area over the years. In this chapter, the authors talked about blockchain's security and privacy issues as well as the impact they've had on various trends and applications. This chapter covers both of these topics.


2020 ◽  
Vol 12 (16) ◽  
pp. 6324 ◽  
Author(s):  
Cláudia A. Soares Machado ◽  
Harmi Takiya ◽  
Charles Lincoln Kenji Yamamura ◽  
José Alberto Quintanilha ◽  
Fernando Tobal Berssaneti

Over the last few years, electric vehicles (EVs) have turned into viable urban transportation alternatives. Charging infrastructure is an issue, since high investment is needed and there is a lot of demand uncertainty. Seeking to fill gaps in past studies, this investigation proposes a set of procedures to identify the most adequate places for implementing the EV charging infrastructure. In order to identify the most favorable districts for the installation and operation of electric charging infrastructure in São Paulo city, the following public available information was considered: the density of points of interest (POIs), distribution of the average monthly per capita income, and number of daily trips made by transportation mode. The current electric vehicle charging network and most important business corridors were additionally taken into account. The investigation shows that districts with the largest demand for charging stations are located in the central area, where the population also exhibits the highest purchasing power. The charging station location process can be applied to other cities, and it is possible to use additional variables to measure social inequality.


Pomorstvo ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 140-148 ◽  
Author(s):  
Marija Jović ◽  
Marko Filipović ◽  
Edvard Tijan ◽  
Mlaen Jardas

This article presents a comprehensive review of the current and rising trends of blockchain technology usage in shipping industry. The definition and features of blockchain technology are provided, as well as the potential usage of blockchain technology in various areas (financial services, Internet of Things, medicine, government, etc.), in order to better understand its complexity and application. Furthermore, the major challenges of blockchain technology are shown, and the most prominent examples of blockchain applications in shipping industry are provided. The application and advantages of blockchain technology in seaports are demonstrated through several examples.


2019 ◽  
Vol 87 ◽  
pp. 01008
Author(s):  
Thota Venkata Pruthvi ◽  
Niladri Dutta ◽  
Phaneendra Babu Bobba ◽  
B Sai Vasudeva

The ability of the software and hardware systems to interchange information is a key factor for the success of the electric vehicle industry. Standards have been developed and are in use to ensure base level interoperability of the front-end communication and signaling processes for smart charging between electric vehicles and charge stations. The Open Charge Alliance (OCA), a group of European industries, have developed an open source common back-end protocol, called Open Charge Point Protocol (OCPP), for charging stations to reduce and secure overall investment costs. OCPP intends to enable grid services based on smart charging. In this paper the authors provide a review of the functionalities OCPP offers and how it can be used in the electrical vehicle-charging infrastructure.


Sign in / Sign up

Export Citation Format

Share Document