Impact of Charging on Battery Life and Battery Degradation in Electric Vehicles

2022 ◽  
pp. 96-113
Author(s):  
Mamdouh Ahmed Ezzeldin ◽  
Ahmed Mohsen Ali ◽  
Jomana Ashraf Mahmoud ◽  
Sohaila Ahmed Rabie ◽  
Hossam Hassan Ammar

Electrical vehicles are the future of the world; hence, there is a necessity to pave the way for the upcoming technology and to ensure its contribution to the society fairly. Nevertheless, if the EVs completely replaced the fuel-based cars, more EV charging stations would be needed which might develop overconsumption of the main grid power causing remarkable instability. Consequently, the micro grids become the solution to this problem, in which they are defined as relatively small networks of energy sources and loads at the distribution level that aim to provide electricity to remote locations where the charging stations are located. In this chapter, the EV is considered as a load to the micro grid indirectly through the EV charging stations. Thus, micro grid loads will be retrieved from experimental data of an actual prototype electric vehicle to reflect on the battery degradation in a micro-grid connected system.

In today’s world, the usages of electronic devices are increased. The most of the devices are depending on power charger, the battery chargers will also varying from different applications like mobile phone charger, vehicles battery charging, electric vehicle batteries chargers and also charging stations. Many users are charging their mobile phone over the night. Due to overnight charging of battery which accelerates to a high average state of charge, as the result battery aging come to exists. Vampire power is one of the daunting issues faced by the world. In the proposed system when battery is full it will automatically stop the power flowing to the battery. The battery level of the mobile phone are tracked by sensors and Arduino for automatically switch off the power. This product is very economical and can be used in any kind of battery charging. As it involves simple components trouble shooting is very easy in case of occurrence of any fault. As the result it helps to conserve amount of power and increase the battery life


2021 ◽  
Vol 4 (S2) ◽  
Author(s):  
Tayenne Dias de Lima ◽  
John F. Franco ◽  
Fernando Lezama ◽  
João Soares ◽  
Zita Vale

AbstractIn the coming years, several transformations in the transport sector are expected, associated with the increase in electric vehicles (EVs). These changes directly impact electrical distribution systems (EDSs), introducing new challenges in their planning and operation. One way to assist in the desired integration of this technology is to allocate EV charging stations (EVCSs). Efforts have been made towards the development of EVCSs, with the ability to recharge the vehicle at a similar time than conventional vehicle filling stations. Besides, EVs can bring environmental benefits by reducing greenhouse gas emissions. However, depending on the energy matrix of the country in which the EVs fleet circulates, there may be indirect emissions of polluting gases. Therefore, the development of this technology must be combined with the growth of renewable generation. Thus, this proposal aims to develop a mathematical model that includes EVs integration in the distribution system. To this end, a mixed-integer linear programming (MILP) model is proposed to solve the allocation problem of EVCSs including renewable energy sources. The model addresses the environmental impact and uncertainties associated with demand (conventional and EVs) and renewable generation. Moreover, an EV charging forecast method is proposed, subject to the uncertainties related to the driver's behavior, the energy required by these vehicles, and the state of charge of the EVs. The proposed model was implemented in the AMPL modelling language and solved via the commercial solver CPLEX. Tests with a 24-node system allow evaluating the proposed method application.


2021 ◽  
Vol 11 (9) ◽  
pp. 3847
Author(s):  
Gamal Alkawsi ◽  
Yahia Baashar ◽  
Dallatu Abbas U ◽  
Ammar Ahmed Alkahtani ◽  
Sieh Kiong Tiong

With the rise in the demand for electric vehicles, the need for a reliable charging infrastructure increases to accommodate the rapid public adoption of this type of transportation. Simultaneously, local electricity grids are being under pressure and require support from naturally abundant and inexpensive alternative energy sources such as wind and solar. This is why the world has recently witnessed the emergence of renewable energy-based charging stations that have received great acclaim. In this paper, we review studies related to this type of alternative energy charging infrastructure. We provide comprehensive research covering essential aspects in this field, including resources, potentiality, planning, control, and pricing. The study also includes studying and clarifying challenges facing this type of electric charging station and proposing suitable solutions for those challenges. The paper aims to provide the reader with an overview of charging electric vehicles through renewable energy and establishing the ground for further research in this vital field.


Author(s):  
Muhammad Hamza Shahbaz ◽  
Arslan Ahmed Amin

: Because of the consistently expanding energy request, the introduction of a decentralized micro-grid based on energy resources will soon be the most exciting development in the power system. Micro-grids, which are mainly based on inverters, are becoming more popular as they can handle different forms of renewable energy effectively. However, one of the most challenging areas of research is their control. In the last few years, many control strategies have been developed. In this review, different control methods have been discussed that apply to the micro-grid system. Furthermore, the comparative analysis of classical and modern control strategies is also considered. This survey guides the new researchers about all available control strategies and room for improvement towards the optimal solution of the micro-grid control techniques. It also identifies several research gaps and future trends therein as well as provides a solution to manage problems in MGs. The strategies are then compared based on their applicability to different control requirements.


Author(s):  
Hossein Parastvand ◽  
Octavian Bass ◽  
Mohammad A. S. Masoum ◽  
Zeinab Moghaddam ◽  
Stefan Lachowicz ◽  
...  

Author(s):  
Mohamad Nassereddine

AbstractRenewable energy sources are widely installed across countries. In recent years, the capacity of the installed renewable network supports large percentage of the required electrical loads. The relying on renewable energy sources to support the required electrical loads could have a catastrophic impact on the network stability under sudden change in weather conditions. Also, the recent deployment of fast charging stations for electric vehicles adds additional load burden on the electrical work. The fast charging stations require large amount of power for short period. This major increase in power load with the presence of renewable energy generation, increases the risk of power failure/outage due to overload scenarios. To mitigate the issue, the paper introduces the machine learning roles to ensure network stability and reliability always maintained. The paper contains valuable information on the data collection devises within the power network, how these data can be used to ensure system stability. The paper introduces the architect for the machine learning algorithm to monitor and manage the installed renewable energy sources and fast charging stations for optimum power grid network stability. Case study is included.


2021 ◽  
Vol 199 ◽  
pp. 107391
Author(s):  
Leonardo Bitencourt ◽  
Tiago P. Abud ◽  
Bruno H. Dias ◽  
Bruno S.M.C. Borba ◽  
Renan S. Maciel ◽  
...  

2021 ◽  
Vol 2 (2) ◽  
pp. 1-21
Author(s):  
Hossam ElHussini ◽  
Chadi Assi ◽  
Bassam Moussa ◽  
Ribal Atallah ◽  
Ali Ghrayeb

With the growing market of Electric Vehicles (EV), the procurement of their charging infrastructure plays a crucial role in their adoption. Within the revolution of Internet of Things, the EV charging infrastructure is getting on board with the introduction of smart Electric Vehicle Charging Stations (EVCS), a myriad set of communication protocols, and different entities. We provide in this article an overview of this infrastructure detailing the participating entities and the communication protocols. Further, we contextualize the current deployment of EVCSs through the use of available public data. In the light of such a survey, we identify two key concerns, the lack of standardization and multiple points of failures, which renders the current deployment of EV charging infrastructure vulnerable to an array of different attacks. Moreover, we propose a novel attack scenario that exploits the unique characteristics of the EVCSs and their protocol (such as high power wattage and support for reverse power flow) to cause disturbances to the power grid. We investigate three different attack variations; sudden surge in power demand, sudden surge in power supply, and a switching attack. To support our claims, we showcase using a real-world example how an adversary can compromise an EVCS and create a traffic bottleneck by tampering with the charging schedules of EVs. Further, we perform a simulation-based study of the impact of our proposed attack variations on the WSCC 9 bus system. Our simulations show that an adversary can cause devastating effects on the power grid, which might result in blackout and cascading failure by comprising a small number of EVCSs.


Sign in / Sign up

Export Citation Format

Share Document