Ecosystem Valuation of Agricultural Land Use Change

2022 ◽  
pp. 90-126
Author(s):  
Dimple Behal

With the rapid pace of urbanization, land-use change is essential for economic and social progress; however, it does not come without costs. With such rapid urbanization, there comes pressure on the land and its resources, like that of food and timber production with a significant impact on the livelihood of millions of people. With the loss of agricultural land due to developmental activities, future agriculture would be very intensive. Therefore, it is likely with the existing pattern of allocating land uses for future development that we may lose the ecosystem services and highly productive agricultural lands. The value of these ecosystem services to agriculture is enormous and often underappreciated. The study focuses on identifying underlying causes of the land-use change, ecosystem services affected due to land-use change in peri-urban areas of Chandigarh using spatial mapping of affected ecosystem services and suggesting proposals for promoting agricultural ecosystem values using economically-informed policy instruments.

BMC Zoology ◽  
2021 ◽  
Vol 6 (1) ◽  
Author(s):  
Mariëtte Pretorius ◽  
Wanda Markotter ◽  
Mark Keith

Abstract Background Modification and destruction of natural habitats are bringing previously unencountered animal populations into contact with humans, with bats considered important zoonotic transmission vectors. Caves and cave-dwelling bats are under-represented in conservation plans. In South Africa, at least two cavernicolous species are of interest as potential zoonotic hosts: the Natal long-fingered bat Miniopterus natalensis and the Egyptian fruit bat Rousettus aegyptiacus. Little information is available about the anthropogenic pressures these species face around important roost sites. Both bats are numerous and widespread throughout the country; land-use changes and urban expansions are a rising concern for both conservation and increased bat-human contact. Results Our study addressed this shortfall by determining the extent of land-cover change around 47 roosts between 2014 and 2018 using existing land cover datasets. We determined the land-cover composition around important roost sites (including maternity, hibernacula and co-roosts), distances to urban settlements and assessed the current protection levels of roost localities. We detected an overall 4% decrease in natural woody vegetation (trees) within 5 km buffer zones of all roost sites, with a 10% decrease detected at co-roost sites alone. Agricultural land cover increased the most near roost sites, followed by plantations and urban land-cover. Overall, roosts were located 4.15 ± 0.91 km from urban settlements in 2018, the distances decreasing as urban areas expand. According to the South African National Biodiversity Institute Ecosystem Threat Status assessment, 72% of roosts fall outside of well-protected ecosystems. Conclusions The current lack of regulatory protection of cavernicolous bats and their roosts, increasing anthropogenic expansions and proximity to human settlements raises concerns about increased human-bat contact. Furthermore, uncontrolled roost visitation and vandalism are increasing, contributing to bat health risks and population declines, though the extent of roosts affected is yet to be quantified. In an era where pandemics are predicted to become more frequent and severe due to land-use change, our research is an urgent call for the formal protection of bat-inhabited caves to safeguard both bats and humans.


2021 ◽  
Author(s):  
Fabio Carvalho ◽  
Alona Armstrong ◽  
Mark Ashby ◽  
Belinda Howell ◽  
Hannah Montag ◽  
...  

<p>According to the latest IPCC report, 70 to 85% of electricity generation worldwide will need to come from renewable sources of energy by 2050 if countries are to meet internationally agreed greenhouse gas emissions targets. In the rush to decarbonise energy supplies to meet such targets, solar parks (SPs) have proliferated around the world, with uncertain implications for the biodiversity and ecosystem service (ES) provision of hosting ecosystems. SPs necessitate significant land-use change that could disproportionately affect the local environment compared to other low-carbon sources.</p><p>In Britain, SPs are commonly built on intensive arable land and managed as grasslands. This offers both risks and opportunities for ecosystem health, yet evidence for assessing ecosystem consequences is scarce. Therefore, there is an urgent need to understand how net environmental gains can be integrated into land-use change for solar energy development to address the current biodiversity and climate crises.</p><p>We used vegetation data from over 70 SPs and 50 countryside survey plots (1 km<sup>2</sup>) in England and Wales to assess the effects of land-use change for SPs on plant diversity and ES provision. We assessed ten habitat indicator variables (e.g., species richness, larval food plants, forage grasses, bird food plants) associated to functionally important plant species that have the potential to enhance ecosystem service delivery.</p><p>SPs showed higher diversity of habitat indicator species than arable land and improved grasslands, with vegetation between solar arrays showing higher numbers of species important for ES provision (e.g., N-fixing species important for nutrient cycling) than vegetation under solar panels. Overall, the diversity of habitat indicator species seemed highly dependent on former land-use, showing SPs have the potential to enhance ecosystem services provision if built on degraded agricultural land.</p><p>Developing this understanding will enable optimisation of SP design and management to ensure delivery of ecosystem co-benefits from this growing land-use.</p>


2021 ◽  
Author(s):  
Lucy W. Ngatia ◽  
Daniel Moriasi ◽  
Johnny M. Grace III ◽  
Riqiang Fu ◽  
Cassel S. Gardner ◽  
...  

Soil organic carbon (SOC) is a major indicator of soil health. Globally, soil contains approximately 2344 Gt of organic carbon (OC), which is the largest terrestrial pool of OC. Through plant growth, soil health is connected with the health of humans, animals, and ecosystems. Provides ecosystem services which include climate regulation, water supplies and regulation, nutrient cycling, erosion protection and enhancement of biodiversity. Global increase in land use change from natural vegetation to agricultural land has been documented as a result of intensification of agricultural practices in response to an increasing human population. Consequently, these changes have resulted in depletion of SOC stock, thereby negatively affecting agricultural productivity and provision of ecosystem services. This necessitates the need to consider technological options that promote retention of SOC stocks. Options to enhance SOC include; no-tillage/conservation agriculture, irrigation, increasing below-ground inputs, organic amendments, and integrated, and diverse cropping/farming systems. In addition, land use conversion from cropland to its natural vegetation improves soil C stocks, highlighting the importance of increasing agricultural production per unit land instead of expanding agricultural land to natural areas.


2020 ◽  
Author(s):  
Inês Amorim Leitão ◽  
Carla Sofia Santos Ferreira ◽  
António José Dinis Ferreira

<p>Land-use changes affect the properties of ecosystems, and are typically associated with decreasing ability to supply services, which in turn causes a decrease in the social well-being. Urbanization is identified as one of the main causes of ecosystem degradation, once it is considered an artificial space that replaces natural areas.This study investigates the impact of land-use changes during 20 years (1995-2015) on the potential supply of ecosystem services in Coimbra municipality, central Portugal. The assessment was based on the evaluation performed by 31 experts familiar with the study area, through questionnaires. The experts ranked the potential supply of 31 ecosystem services, grouped in regulation, provisioning and cultural services, for the several land-uses existent. Experts performed a qualitative evaluation, considering ‘strong adverse potential’, ‘weak adverse potential’, ‘not relevant’, ‘low positive potential’ and ‘strong positive potential’. The qualitative evaluation was converted into a quantitative classification (-2, -1, 0, 1, 2). Quantitative values were then used to develop an ecosystem services quantification matrix and to map the information in the study area, using Geographic Information Systems (GIS). An urban expansion from 14% to 18% was recorded over the last 20 years. Agricultural land decreased 8% due to conversion into forest (4% increase) and urban areas (4% increase). This has led to a decrease in the supply of provision (e.g. food) and regulation services (e.g. flood regulation). In fact, over the last years, recurrent floods have been increasingly noticed in Coimbra city. On the other hand, the growth of forest areas has led to an increase in general ESs supply. The adverse impacts of urbanization were partially compensated by enlarging the benefits provided by forest areas, which is the land-use with greatest ESs potential supply. In order to support urban planning and develop sustainable cities, it is essential to quantify the potential supply of ecosystem services considering local scale and characteristics.</p>


2019 ◽  
Author(s):  
Nyoman Arto Suprapto

Singaraja is the second largest city after Denpasar in Bali. The magnitude of the potential of the region both trade and services, agriculture and tourism in Buleleng Regency has given a very broad impact not only on the economy but also the use of land. Economic development in the city of Singaraja cause some effects such as population growth, an increasing number of facilities (social, economic, health, and others), as well as changes in land use.Changes in land use have a serious impact on the environment in the city of Singaraja. The development of urban areas of Singaraja has given the excesses of increasing the land conversion. Suburb dominated by wetland agriculture has now turned into buildings to meet the needs of shelter, trade and services as well as urban utilities. This study was conducted by mean to determine how changes in land use from agricultural land into build up land during twelve years (period of 2002 - 2014) and the prediction of land use within the next 12 years (period of 2020 and 2026). Prediction of land use changes will be done using spatial simulation method which is integrating Cellular Automata (CA) and Geographic Information Systems (GIS) which analyzed based on land requirement, the driving variable of land use changes (population and road) and the inhabiting variable of land use change (slope steepness and rivers).Keywords : Land Use Change, Land Use Change Modeling, Celullar Automata, GIS


2022 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Anang Pra Yogi ◽  
Bhimo Rizky Samudro ◽  
Albertus Maqnus Soesilo ◽  
Yogi Pasca Pratama

Purpose This study aims to provide descriptive analysis on urbanization pattern in Sukoharjo Regency and also its correlation to land use and cover change (LUCC) issue. This becomes more relevant because the authors find that there are few studies conducted regarding the topic. Consider again the importance role of Sukoharjo Regency as an area that provides supporting food supply, LUCC particularly in agriculture land became even more crucial. Design/methodology/approach This study uses literature reviews and descriptive analysis. Data for this study are obtained from previous studies and statistical data from Central Statistical Bureau. Findings Sukoharjo Regency proved as an interesting migration destination for some group of population. The population group particularly come from Surakarta city (growth core) as a form of urban sprawl or urban expansion. Migrant population live in Sukoharjo Regency are mostly a population group with a productive age range and generally with high-school or vocational school level. Moreover, their main reason to migrate is the availability of job opportunities. Regarding LUCC, migrant populations that come to Sukoharjo Regency apparently have property with ownership certification. Housing area development, particularly concentrated in the district, was located close to the borderline Surakarta city. Originality/value This research contributes to the analysis of land use change trends in peri-urban areas caused by migration. The results of this study can be used for further policy making to overcome the dilemma of land use change, especially those that occur on agricultural land.


2020 ◽  
Author(s):  
Bence Decsi ◽  
Zsolt Kozma

<p>As a result of climate change, improving the efficiency of our water management has become a key social goal in recent decades. In many regions, water management problems are becoming more common as the result of hydrologic extremes, such as water scarcity, drought or floods.</p><p>Countries and regions dealing with water problems, like some parts of Hungary, could avoid major damage by land use change. The possibility of land use change is obviously not an option in certain instances, especially in populated areas or areas with major infrastructure (roads, railways, airports, factories, etc.). At the same time, non-populated areas (primarily agricultural land) may be transformed in the future, in the hope of better water management.</p><p>Complex, multi-dimensional assessment of ecosystem services can be a step forward in the evaluation and planning of future land use changes with the aim of improving water resources management. The strength of this approach is multi-disciplinarity, which requires the collaboration of representatives of the technical, economic, social and ecological sciences.</p><p>In our study, we quantified and mapped the most important water resources related indicators and services of the Zala River basin in Western Hungary. Zala River is the largest sub-catchment of Lake Balaton, Central-Europe’s largest standing water. The lake has great economic and social importance in Hungary, primarily due to its recreational and cultural services, so it is necessary to have sufficient quantity and quality of water.  The catchment area is 1521 km<sup>2</sup>, land use conditions are dominated by agricultural and forest areas (around 57% and 37% respectively).</p><p>For the quantification of ecosystem services indicators, we used the GIS based, static model package InVEST (Integrated Valuation of Ecosystem Services and Tradeoffs). InVEST is suggested to describe the socio-ecological state of several services, under various periods or land use conditions. The strength of the model lies in its solid data requirements and low computational demand. In our work, we mapped the following services and indicators: annual water yield, seasonal water yield, quickflow, nutrient retention, sediment retention and agricultural crop yields.</p><p>We examined the impact of different interventions on the ecosystem services. We intervened primarily in areas where agricultural land use is not justified due to different environmental conditions. In these areas, we analyzed the introduction of natural surfaces with afforestation and meadows. We built up a reference (based on a novel LULC map representing actual conditions) and some fictive model variants. These model variants differed in the amount and location of the new semi-natural areas. The variants were compared for two temporal periods: 1980-2010 and 2020-2050 (based on climate models).</p><p>We quantified the tradeoffs as a result of a given land use change. As expected, the future negative effects of climate change could be mitigated by increasing semi-natural areas. All ecosystem services would improve except for crop yields. At the same time, however, farmers would be deprived of significant yields in areas, which are excluded from agriculture. Our research highlights that the positive effects or tradeoffs due to land-use change will be needed in the future.</p>


2015 ◽  
Vol 161 ◽  
pp. 443-452 ◽  
Author(s):  
G.M. Tarekul Islam ◽  
A.K.M. Saiful Islam ◽  
Ahsan Azhar Shopan ◽  
Md Munsur Rahman ◽  
Attila N. Lázár ◽  
...  

Geosciences ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 312
Author(s):  
Barbara Wiatkowska ◽  
Janusz Słodczyk ◽  
Aleksandra Stokowska

Urban expansion is a dynamic and complex phenomenon, often involving adverse changes in land use and land cover (LULC). This paper uses satellite imagery from Landsat-5 TM, Landsat-8 OLI, Sentinel-2 MSI, and GIS technology to analyse LULC changes in 2000, 2005, 2010, 2015, and 2020. The research was carried out in Opole, the capital of the Opole Agglomeration (south-western Poland). Maps produced from supervised spectral classification of remote sensing data revealed that in 20 years, built-up areas have increased about 40%, mainly at the expense of agricultural land. Detection of changes in the spatial pattern of LULC showed that the highest average rate of increase in built-up areas occurred in the zone 3–6 km (11.7%) and above 6 km (10.4%) from the centre of Opole. The analysis of the increase of built-up land in relation to the decreasing population (SDG 11.3.1) has confirmed the ongoing process of demographic suburbanisation. The paper shows that satellite imagery and GIS can be a valuable tool for local authorities and planners to monitor the scale of urbanisation processes for the purpose of adapting space management procedures to the changing environment.


Author(s):  
Yujuan Gao ◽  
Jianli Jia ◽  
Beidou Xi ◽  
Dongyu Cui ◽  
Wenbing Tan

The heavy metal pollution induced by agricultural land use change has attracted great attention. In this study, the divergent response of bioavailability of heavy metals in rhizosphere soil to different...


Sign in / Sign up

Export Citation Format

Share Document