Biosynthesis of Silver Nanoparticles for Study of Their Antimicrobial Effect on Plasma-Treated Textiles

2022 ◽  
pp. 149-166
Author(s):  
Shazia Shukrullah ◽  
Muhammad Anwar ◽  
Muhammad Yasin Naz ◽  
Inzamam Ul Haq

Dielectric barrier discharges (DBD) are the configurations for the production of electrical discharges using a dielectric medium between the metallic electrodes. Plasma treatment produces negative radicals, which increase the adhesion of fabric for nanoparticles. The plasma treatment made the fabric surface rougher because of the etching effect. UV-vis spectra of the Plasmon resonance band observed at 253-400 nm. X-ray diffraction results showed that AgNPs has a cubical structure and the average crystalline size is 25 nm. SEM results determined that the morphology of the silver nanoparticles are flower shaped. The energy bandgap of AgNPs was observed at 2.59 eV. The silver nanoparticles were found to have enhanced antimicrobial properties and showed better zone of inhibition against isolated bacteria (Escherichia coli). DBD plasma treatment changed the chemical as well as physical properties of the cotton fabric. FTIR spectrum revealed that oxygen-containing groups, such as C-O, C=O, O-C-O, as well as O-C=O, increased on DBD treatment of cotton samples.

Coatings ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 581 ◽  
Author(s):  
Ana Isabel Ribeiro ◽  
Dilara Senturk ◽  
Késia Karina Silva ◽  
Martina Modic ◽  
Uros Cvelbar ◽  
...  

In this study, a low concentration (10 μg·mL−1) of poly(N-vinylpyrrolidone) (PVP)-coated silver nanoparticles (AgNPs) were deposited by spray and exhaustion (30, 70 and 100 °C) methods onto untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 (PA66) fabric. DBD plasma-treated samples showed higher AgNP deposition than untreated ones for all methods. After five washing cycles, only DBD plasma-treated samples displayed AgNPs on the fabric surface. The best-performing method was exhaustion at 30 °C, which exhibited less agglomeration and the best antibacterial efficacy against S. aureus (4 log reduction). For E. coli, the antimicrobial effect showed good results in all the exhaustion samples (5 log reduction). Considering the spray method, only the DBD plasma-treated samples showed some bacteriostatic activity for both strains, but the AgNP concentration was not enough to have a bactericidal effect. Our results suggest DBD plasma may be a low cost and chemical-free method for the preparation of antibacterial textiles, allowing for the immobilization of a very low—but effective—concentration of AgNPs.


Holzforschung ◽  
2018 ◽  
Vol 72 (11) ◽  
pp. 979-991 ◽  
Author(s):  
Jure Žigon ◽  
Marko Petrič ◽  
Sebastian Dahle

AbstractThe treatment of wood surfaces with gas discharges is one of the methods to achieve better surface adhesion properties. Good penetration, spreading and wettability of the applied liquid adhesives and coatings is a crucial factor for their adequate mechanical properties. Plasmas are the result of electrical discharge and can be created in different ways. The plasma treatment (PT) is frequently executed prior to material bonding or coating via the so-called dielectric barrier discharges (DBD) at atmospheric pressure. This literature review summarizes the essential aspects of DBD PTs aiming at a better wettability and surface adhesion. After introduction of the principle of DBD, the individual effects of internal and external parameters of the process will be discussed, which influence the final properties of treated materials.


2017 ◽  
Vol 407 ◽  
pp. 412-417 ◽  
Author(s):  
Weimin Chen ◽  
Xiaoyan Zhou ◽  
Xiaotao Zhang ◽  
Jie Bian ◽  
Shukai Shi ◽  
...  

Nanomaterials ◽  
2020 ◽  
Vol 10 (4) ◽  
pp. 607
Author(s):  
Ana I. Ribeiro ◽  
Martina Modic ◽  
Uros Cvelbar ◽  
Gheorghe Dinescu ◽  
Bogdana Mitu ◽  
...  

Polyvinylpyrrolidone-coated silver nanoparticles (PVP-AgNPs) dispersed in ethanol, water and water/alginate were used to functionalize untreated and dielectric barrier discharge (DBD) plasma-treated polyamide 6,6 fabric (PA66). The PVP-AgNPs dispersions were deposited onto PA66 by spray and exhaustion methods. The exhaustion method showed a higher amount of deposited AgNPs. Water and water-alginate dispersions presented similar results. Ethanol amphiphilic character showed more affinity to AgNPs and PA66 fabric, allowing better uniform surface distribution of nanoparticles. Antimicrobial effect in E. coli showed good results in all the samples obtained by exhaustion method but using spray method only the DBD plasma treated samples displayed antimicrobial activity (log reduction of 5). Despite the better distribution achieved using ethanol as a solvent, water dispersion samples with DBD plasma treatment displayed better antimicrobial activity against S. aureus bacteria in both exhaustion (log reduction of 1.9) and spray (methods log reduction of 1.6) due to the different oxidation states of PA66 surface interacting with PVP-AgNPs, as demonstrated by X-ray Photoelectron Spectroscopy (XPS) analysis. Spray method using the water-suspended PVP-AgNPs onto DBD plasma-treated samples is much faster, less agglomerating and uses 10 times less PVP-AgNPs dispersion than the exhaustion method to obtain an antimicrobial effect in both S. aureus and E. coli.


2011 ◽  
Vol 13 (5) ◽  
pp. 612-616 ◽  
Author(s):  
Di Zhao ◽  
Dacheng Wang ◽  
Gui Yan ◽  
Hong Ma ◽  
Xiaojing Xiong ◽  
...  

2020 ◽  
Vol 20 ◽  
pp. 100600
Author(s):  
Vincenza Armenise ◽  
Fiorenza Fanelli ◽  
Antonella Milella ◽  
Lucia D'Accolti ◽  
Antonella Uricchio ◽  
...  

2012 ◽  
Vol 1469 ◽  
Author(s):  
P. Favia ◽  
D. Pignatelli ◽  
G. Dilecce ◽  
B. R. Pistillo ◽  
M. Nardulli ◽  
...  

ABSTRACTCells positioned at the bottom of a Petri dish were exposed, in a home-made plasma source, to pulsed Dielectric Barrier Discharges operated in air in order to investigate the effect of the plasma species on their viability and growth. Processes with different number of pulse, respectively 1,3,9 and 27 pulse, were performed to study the influence on viability and cell growth of two different cell lines, Saos 2 and NHDF. Atmospheric air discharges applied on the two selected cell lines have shown an effect strongly dependent on cell type. At certain doses we have measured increased activity of the NHDF fibroblasts cell line. On the other side, an inhibition of cell adhesion and growth on the Saos 2 osteoblastoma cell line, directly dependent on the plasma doses, was clear. This study shows that by properly tuning the dose of exposure of cells to air plasma it is possible to induce both positive and negative effects on cell growth, that would be useful in several branches of Medicine.


2020 ◽  
Vol 71 (2) ◽  
pp. 273-279
Author(s):  
Daniela Gitea ◽  
Andrei Teodorescu ◽  
Carmen Pantis ◽  
Delia Mirela Tit ◽  
Alexa Florina Bungau ◽  
...  

Silver nanoparticles (AgNPs) ranging in size from 1-100 nm show good application potential in many medical fields (therapies, medical devices, molecular diagnostics) due to their antimicrobial properties. The purpose of this study is to characterize from physicochemical perspective the colloidal dispersion obtained through phyto-synthesis. The existence of colloidal silver particles was visually highlighted through Thyndall effect. The bio-reduction of silver ions was analyzed through modern techniques, UV-VIS spectrophotometry and Hyperspectral Microscopy. After getting the colloidal dispersion, its antibacterial activity was proved by sowing on different plates the following types of pathogenic agents: Staphylococcus aureus, Escherichia coli, Pseudomonas aeruginosa. The UV-VIS spectrum for the methanolic extract with 10% H. perforatum L. and for the silver colloidal dispersions was achieved, observing a max at 455 nm. The hyperspectral images were achieved observing the shape, conformation, and the size of the obtained particles. During the antibacterial efficacy testing on those three strains of pathological agents, in all situations, the colloidal dispersion had a promising antimicrobial effect.


2007 ◽  
Vol 15 (5) ◽  
pp. 357-363 ◽  
Author(s):  
Dirk Pohle ◽  
Cornelia Damm ◽  
Johanna Neuhof ◽  
Alfons Rösch ◽  
Helmut Münstedt

Materials exhibiting an antimicrobial effect are especially advantageous for medical textiles which are in very close and long-term contact with human skin. Orthopaedic stockings made of terry cotton and polyamide were coated with silver nanoparticles by a simple dip coating process under mild conditions. Both textiles released silver ions over at least 28 days. The silver ion release for both materials is governed by diffusion. The amount of silver ions released by the cotton textile was higher than by the nylon stockings by about a factor of 4. The reason was a larger silver reservoir in the cotton sample, because it contains much more silver than the nylon fabric. As expected from the results of the Ag+ release tests, both these silver coated textiles were active against Escherichia coli.


Sign in / Sign up

Export Citation Format

Share Document