Performance Analysis of Pose Invariant Face Recognition Approaches in Unconstrained Environments

Author(s):  
M. Parisa Beham ◽  
S. M. Mansoor Roomi ◽  
J. Alageshan ◽  
V. Kapileshwaran

Face recognition and authentication are two significant and dynamic research issues in computer vision applications. There are many factors that should be accounted for face recognition; among them pose variation is a major challenge which severely influence in the performance of face recognition. In order to improve the performance, several research methods have been developed to perform the face recognition process with pose invariant conditions in constrained and unconstrained environments. In this paper, the authors analyzed the performance of a popular texture descriptors viz., Local Binary Pattern, Local Derivative Pattern and Histograms of Oriented Gradients for pose invariant problem. State of the art preprocessing techniques such as Discrete Cosine Transform, Difference of Gaussian, Multi Scale Retinex and Gradient face have also been applied before feature extraction. In the recognition phase K- nearest neighbor classifier is used to accomplish the classification task. To evaluate the efficiency of pose invariant face recognition algorithm three publicly available databases viz. UMIST, ORL and LFW datasets have been used. The above said databases have very wide pose variations and it is proved that the state of the art method is efficient only in constrained situations.

Author(s):  
C Hemalatha ◽  
E Logashanmugam

<span>Face recognition system is one of the most interesting studied topics in computer vision for past two decades. Among the other popular biometrics such as the retina, fingerprint, and iris recognition systems, the face recognition is capable of recognizing the uncooperative samples in a non-intrusive manner. Also, it can be applied to many applications of surveillance security, forensics, border control, digital entertainment where face recognition is used in most. In the proposed system an automatic face recognition system is discussed. The proposed recognition system is based on the Dual-Tree M-Band Wavelet Transform (DTMBWT) transform algorithm and features obtained by varying the different filter in the DTMBWT transform. Then the different filter features are classified by means of the K-Nearest Neighbor (KNN) classifier for recognizing the face correctly. The implementation of the system is done by using the ORL face image database, and the performance metrics are calculated.</span>


Author(s):  
Vinodpuri Rampuri Gosavi ◽  
Anil Kishanrao Deshmane ◽  
Ganesh Shahuba Sable

Image processing has enormous applications and bio-metrics is one of them that has become a focal point for researchers, as well as for developers. The most common application of bio-metrics is the face analysis. The face analysis is an efficient method to detect and verify the faces of people. In this research article we have the proposed techniques are CRC and KNN. Generally, CRC (Collaboration representation based classification) relies on the collaboration among various classes to represent an image sample. KNN (K-Nearest Neighbor) it is a category of classification approach that utilized to access regression purposes. The experiment is performed on the Yale database and the results are acquired from the simulation tool MATLAB. The performance parameters are accurate, processing time, random noise and random occlusion. A comparison of performance is described and it is proven that the proposed method results give the enhancement in the overall performance of face recognition and accuracy value is 99%.


2021 ◽  
Vol 38 (1) ◽  
pp. 51-60
Author(s):  
Semih Ergin ◽  
Sahin Isik ◽  
Mehmet Bilginer Gulmezoglu

In this paper, the implementations and comparison of some classifiers along with 2D subspace projection approaches have been carried out for the face recognition problem. For this purpose, the well-known classifiers such as K-Nearest Neighbor (K-NN), Common Matrix Approach (CMA), Support Vector Machine (SVM) and Convolutional Neural Network (CNN) are conducted on low dimensional face representations that are determined from 2DPCA-, 2DSVD- and 2DFDA approaches. CMA, which is a 2D version of the Common Vector Approach (CVA), finds a common matrix for each face class. From the experimental results, we have observed that the SVM presents a dominant performance in general. When overall results of all datasets are considered, CMA is slightly superior to others in case of 2DPCA- and 2DSVD-based features matrices of the AR dataset. On the other side, CNN is better than other classifiers when it comes to develop a face recognition system based on original face samples and 2DPCA-based feature matrices of the Yale dataset. The experimental results indicate that use of these feature matrices with CMA, SVM, and CNN in classification problems is more advantageous than the use of original pixel matrices in the sense of both processing time and memory requirement.


Author(s):  
Sana Zeba ◽  
Mohammad Amjad

In this paper, the authors develop an efficient face recognition algorithm from images or live video streaming for IoT systems based on K-nearest neighbor and support vector machine learning to recognize the person from the local database and extract the features of the face. Because of the complexity of the conditions, there might be some factors of facing errors like the size; the angle; the distance from the ear, nose, and eyes; etc. This sustainable machine learning-based IoT system is designed for sovereign face recognition with features extraction with improved accuracy near about 96%. The experimental study is done to test the performance of the face recognition in the changes of number of persons in video or images. Finally, this manuscript recognized persons from live video or images with accuracy approximately 96% by using the SVM and KNN classifiers and discussed with the block diagram and proposed algorithm.


2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Zhe-Zhou Yu ◽  
Yu-Hao Liu ◽  
Bin Li ◽  
Shu-Chao Pang ◽  
Cheng-Cheng Jia

In a real world application, we seldom get all images at one time. Considering this case, if a company hired an employee, all his images information needs to be recorded into the system; if we rerun the face recognition algorithm, it will be time consuming. To address this problem, In this paper, firstly, we proposed a novel subspace incremental method called incremental graph regularized nonnegative matrix factorization (IGNMF) algorithm which imposes manifold into incremental nonnegative matrix factorization algorithm (INMF); thus, our new algorithm is able to preserve the geometric structure in the data under incremental study framework; secondly, considering we always get many face images belonging to one person or many different people as a batch, we improved our IGNMF algorithms to Batch-IGNMF algorithms (B-IGNMF), which implements incremental study in batches. Experiments show that (1) the recognition rate of our IGNMF and B-IGNMF algorithms is close to GNMF algorithm while it runs faster than GNMF. (2) The running times of our IGNMF and B-IGNMF algorithms are close to INMF while the recognition rate outperforms INMF. (3) Comparing with other popular NMF-based face recognition incremental algorithms, our IGNMF and B-IGNMF also outperform then both the recognition rate and the running time.


Author(s):  
Amal A. Moustafa ◽  
Ahmed Elnakib ◽  
Nihal F. F. Areed

This paper presents a methodology for Age-Invariant Face Recognition (AIFR), based on the optimization of deep learning features. The proposed method extracts deep learning features using transfer deep learning, extracted from the unprocessed face images. To optimize the extracted features, a Genetic Algorithm (GA) procedure is designed in order to select the most relevant features to the problem of identifying a person based on his/her facial images over different ages. For classification, K-Nearest Neighbor (KNN) classifiers with different distance metrics are investigated, i.e., Correlation, Euclidian, Cosine, and Manhattan distance metrics. Experimental results using a Manhattan distance KNN classifier achieves the best Rank-1 recognition rate of 86.2% and 96% on the standard FGNET and MORPH datasets, respectively. Compared to the state-of-the-art methods, our proposed method needs no preprocessing stages. In addition, the experiments show its privilege over other related methods.


2017 ◽  
Vol 9 (1) ◽  
pp. 1-9
Author(s):  
Fandiansyah Fandiansyah ◽  
Jayanti Yusmah Sari ◽  
Ika Putri Ningrum

Face recognition is one of the biometric system that mostly used for individual recognition in the absent machine or access control. This is because the face is the most visible part of human anatomy and serves as the first distinguishing factor of a human being. Feature extraction and classification are the key to face recognition, as they are to any pattern classification task. In this paper, we describe a face recognition method based on Linear Discriminant Analysis (LDA) and k-Nearest Neighbor classifier. LDA used for feature extraction, which directly extracts the proper features from image matrices with the objective of maximizing between-class variations and minimizing within-class variations. The features of a testing image will be compared to the features of database image using K-Nearest Neighbor classifier. The experiments in this paper are performed by using using 66 face images of 22 different people. The experimental result shows that the recognition accuracy is up to 98.33%. Index Terms—face recognition, k nearest neighbor, linear discriminant analysis.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Xia Miao ◽  
Ziyao Yu ◽  
Ming Liu

The partial differential equation learning model is applied to another high-level visual-processing problem: face recognition. A novel feature selection method based on partial differential equation learning model is proposed. The extracted features are invariant to rotation and translation and more robust to illumination changes. In the evaluation of students’ concentration in class, this paper firstly uses the face detection algorithm in face recognition technology to detect the face and intercept the expression data, and calculates the rise rate. Then, the improved model of concentration analysis and evaluation of a college Chinese class is used to recognize facial expression, and the corresponding weight is given to calculate the expression score. Finally, the head-up rate calculated at the same time is multiplied by the expression score as the final concentration score. Through the experiment and analysis of the experimental results in the actual classroom, the corresponding conclusions are drawn and teaching suggestions are provided for teachers. For each face, a large neighborhood set is firstly selected by the k -nearest neighbor method, and then, the sparse representation of sample points in the neighborhood is obtained, which effectively combines the locality of k -nearest neighbor and the robustness of sparse representation. In the sparse preserving nonnegative block alignment algorithm, a discriminant partial optimization model is constructed by using sparse reconstruction coefficients to describe local geometry and weighted distance to describe class separability. The two algorithms obtain good clustering and recognition results in various cases of real and simulated occlusion, which shows the effectiveness and robustness of the algorithm. In order to verify the reliability of the model, this paper verified the model through in-class practice tests, teachers’ questions, and interviews with students and teachers. The results show that the proposed joint evaluation method based on expression and head-up rate has high accuracy and reliability.


2014 ◽  
Vol 644-650 ◽  
pp. 4080-4083
Author(s):  
Ye Cai Guo ◽  
Ling Hua Zhang

In order to overcome the defects that the face recognition rate can be greatly reduced in the existing uncontrolled environments, Bayesian robust coding for face recognition based on new dictionary was proposed. In this proposed algorithm, firstly a binary image is gained by gray threshold transformation and a more clear image without some isolated points can be obtained via smoothing, secondly a new dictionary can be reconstructed via fusing the binary image with the original training dictionary, finally the test image can be classified as the existing class via Bayesian robust coding. The experimental results based on AR face database show that the proposed algorithm has higher face recognition rate comparison with RRC and RSC algorithm.


Sign in / Sign up

Export Citation Format

Share Document