WLI Fuzzy Clustering and Adaptive Lion Neural Network (ALNN) for Cloud Intrusion Detection

2019 ◽  
Vol 11 (1) ◽  
pp. 1-17
Author(s):  
Pinki Sharma ◽  
Jyotsna Sengupta ◽  
P. K. Suri

Cloud computing is the internet-based technique where the users utilize the online resources for computing services. The attacks or intrusion into the cloud service is the major issue in the cloud environment since it degrades performance. In this article, we propose an adaptive lion-based neural network (ALNN) to detect the intrusion behaviour. Initially, the cloud network has generated the clusters using a WLI fuzzy clustering mechanism. This mechanism obtains the different numbers of clusters in which the data objects are grouped together. Then, the clustered data is fed into the newly designed adaptive lion-based neural network. The proposed method is developed by the combination of Levenberg-Marquardt algorithm of neural network and adaptive lion algorithm where female lions are used to update the weight adaptively using lion optimization algorithm. Then, the proposed method is used to detect the malicious activity through training process. Thus, the different clustered data is given to the proposed ALNN model. Once the data is trained, then it needs to be aggregated. Subsequently, the aggregated data is fed into the proposed ALNN method where the intrusion behaviour is detected. Finally, the simulation results of the proposed method and performance is analysed through accuracy, false positive rate, and true positive rate. Thus, the proposed ALNN algorithm attains 96.46% accuracy which ensures better detection performance.

Author(s):  
Harikrishna Mulam ◽  
Malini Mudigonda

Many research works are in progress in classification of the eye movements using the electrooculography signals and employing them to control the human–computer interface systems. This article introduces a new model for recognizing various eye movements using electrooculography signals with the help of empirical mean curve decomposition and multiwavelet transformation. Furthermore, this article also adopts a principal component analysis algorithm to reduce the dimension of electrooculography signals. Accordingly, the dimensionally reduced decomposed signal is provided to the neural network classifier for classifying the electrooculography signals, along with this, the weight of the neural network is fine-tuned with the assistance of the Levenberg–Marquardt algorithm. Finally, the proposed method is compared with the existing methods and it is observed that the proposed methodology gives the better performance in correspondence with accuracy, sensitivity, specificity, precision, false positive rate, false negative rate, negative predictive value, false discovery rate, F1 score, and Mathews correlation coefficient.


2017 ◽  
Vol 7 (2) ◽  
pp. 16-41 ◽  
Author(s):  
Naghmeh Moradpoor Sheykhkanloo

Structured Query Language injection (SQLi) attack is a code injection technique where hackers inject SQL commands into a database via a vulnerable web application. Injected SQL commands can modify the back-end SQL database and thus compromise the security of a web application. In the previous publications, the author has proposed a Neural Network (NN)-based model for detections and classifications of the SQLi attacks. The proposed model was built from three elements: 1) a Uniform Resource Locator (URL) generator, 2) a URL classifier, and 3) a NN model. The proposed model was successful to: 1) detect each generated URL as either a benign URL or a malicious, and 2) identify the type of SQLi attack for each malicious URL. The published results proved the effectiveness of the proposal. In this paper, the author re-evaluates the performance of the proposal through two scenarios using controversial data sets. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed model in terms of accuracy, true-positive rate as well as false-positive rate.


Author(s):  
Anil B. Gavade ◽  
Vijay S. Rajpurohit

Over the last few decades, multiple advances have been done for the classification of vegetation area through land cover, and land use. However, classification problem is one of the most complicated and contradicting problems that has received considerable attention. Therefore, to tackle this problem, this paper proposes a new Firefly-Harmony search based Deep Belief Neural Network method (FHS-DBN) for the classification of land cover, and land use. The segmentation process is done using Bayesian Fuzzy Clustering,and the feature matrix is developed. The feature matrix is given to the proposed FHS-DBN method that distinguishes the land coverfrom the land use in the multispectral satellite images, for analyzing the vegetation area. The proposed FHS-DBN method is designedby training the DBN using the FHS algorithm, which is developed by the combination of Firefly Algorithm (FA) and Harmony Search (HS) algorithm. The performance of the FHS-DBN model is evaluated using three metrics, such as Accuracy, True Positive Rate (TPR), and False Positive Rate (FPR). From the experimental analysis, it is concludedthat the proposed FHS-DBN model achieves ahigh classification accuracy of 0.9381, 0.9488, 0.9497, and 0.9477 usingIndian Pine, Salinas scene, Pavia Centre and university, and Pavia University scene dataset.


Author(s):  
Naghmeh Moradpoor Sheykhkanloo

Structured Query Language injection (SQLi) attack is a code injection technique where hackers inject SQL commands into a database via a vulnerable web application. Injected SQL commands can modify the back-end SQL database and thus compromise the security of a web application. In the previous publications, the author has proposed a Neural Network (NN)-based model for detections and classifications of the SQLi attacks. The proposed model was built from three elements: 1) a Uniform Resource Locator (URL) generator, 2) a URL classifier, and 3) a NN model. The proposed model was successful to: 1) detect each generated URL as either a benign URL or a malicious, and 2) identify the type of SQLi attack for each malicious URL. The published results proved the effectiveness of the proposal. In this paper, the author re-evaluates the performance of the proposal through two scenarios using controversial data sets. The results of the experiments are presented in order to demonstrate the effectiveness of the proposed model in terms of accuracy, true-positive rate as well as false-positive rate.


2020 ◽  
Vol 44 (3) ◽  
pp. 168-173
Author(s):  
Lazar Kats ◽  
Marilena Vered ◽  
Sigalit Blumer ◽  
Eytan Kats

Objective: To apply the technique of deep learning on a small dataset of panoramic images for the detection and segmentation of the mental foramen (MF). Study design: In this study we used in-house dataset created within the School of Dental Medicine, Tel Aviv University. The dataset contained randomly chosen and anonymized 112 digital panoramic X-ray images and corresponding segmentations of MF. In order to solve the task of segmentation of the MF we used a single fully convolution neural network, that was based on U-net as well as a cascade architecture. 70% of the data were randomly chosen for training, 15% for validation and accuracy was tested on 15%. The model was trained using NVIDIA GeForce GTX 1080 GPU. The SPSS software, version 17.0 (Chicago, IL, USA) was used for the statistical analysis. The study was approved by the ethical committee of Tel Aviv University. Results: The best results of the dice similarity coefficient ( DSC), precision, recall, MF-wise true positive rate (MFTPR) and MF-wise false positive rate (MFFPR) in single networks were 49.51%, 71.13%, 68.24%, 87.81% and 14.08%, respectively. The cascade of networks has shown better results than simple networks in recall and MFTPR, which were 88.83%, 93.75%, respectively, while DSC and precision achieved the lowest values, 31.77% and 23.92%, respectively. Conclusions: Currently, the U-net, one of the most used neural network architectures for biomedical application, was effectively used in this study. Methods based on deep learning are extremely important for automatic detection and segmentation in radiology and require further development.


2021 ◽  
pp. 1-21
Author(s):  
Asma Naseer ◽  
Maria Tamoor ◽  
Arifah Azhar

Background: Coronavirus Disease 2019 (COVID-19) is contagious, producing respiratory tract infection, caused by a newly discovered coronavirus. Its death toll is too high, and early diagnosis is the main problem nowadays. Infected people show a variety of symptoms such as fatigue, fever, tastelessness, dry cough, etc. Some other symptoms may also be manifested by radiographic visual identification. Therefore, Chest X-Rays (CXR) play a key role in the diagnosis of COVID-19. Methods: In this study, we use Chest X-Rays images to develop a computer-aided diagnosis (CAD) of the disease. These images are used to train two deep networks, the Convolution Neural Network (CNN), and the Long Short-Term Memory Network (LSTM) which is an artificial Recurrent Neural Network (RNN). The proposed study involves three phases. First, the CNN model is trained on raw CXR images. Next, it is trained on pre-processed CXR images and finally enhanced CXR images are used for deep network CNN training. Geometric transformations, color transformations, image enhancement, and noise injection techniques are used for augmentation. From augmentation, we get 3,220 augmented CXRs as training datasets. In the final phase, CNN is used to extract the features of CXR imagery that are fed to the LSTM model. The performance of the four trained models is evaluated by the evaluation techniques of different models, including accuracy, specificity, sensitivity, false-positive rate, and receiver operating characteristic (ROC) curve. Results: We compare our results with other benchmark CNN models. Our proposed CNN-LSTM model gives superior accuracy (99.02%) than the other state-of-the-art models. Our method to get improved input, helped the CNN model to produce a very high true positive rate (TPR 1) and no false-negative result whereas false negative was a major problem while using Raw CXR images. Conclusions: We conclude after performing different experiments that some image pre-processing and augmentation, remarkably improves the results of CNN-based models. It will help a better early detection of the disease that will eventually reduce the mortality rate of COVID.


Electronics ◽  
2020 ◽  
Vol 9 (11) ◽  
pp. 1894
Author(s):  
Chun Guo ◽  
Zihua Song ◽  
Yuan Ping ◽  
Guowei Shen ◽  
Yuhei Cui ◽  
...  

Remote Access Trojan (RAT) is one of the most terrible security threats that organizations face today. At present, two major RAT detection methods are host-based and network-based detection methods. To complement one another’s strengths, this article proposes a phased RATs detection method by combining double-side features (PRATD). In PRATD, both host-side and network-side features are combined to build detection models, which is conducive to distinguishing the RATs from benign programs because that the RATs not only generate traffic on the network but also leave traces on the host at run time. Besides, PRATD trains two different detection models for the two runtime states of RATs for improving the True Positive Rate (TPR). The experiments on the network and host records collected from five kinds of benign programs and 20 famous RATs show that PRATD can effectively detect RATs, it can achieve a TPR as high as 93.609% with a False Positive Rate (FPR) as low as 0.407% for the known RATs, a TPR 81.928% and FPR 0.185% for the unknown RATs, which suggests it is a competitive candidate for RAT detection.


2021 ◽  
pp. 103985622110286
Author(s):  
Tracey Wade ◽  
Jamie-Lee Pennesi ◽  
Yuan Zhou

Objective: Currently eligibility for expanded Medicare items for eating disorders (excluding anorexia nervosa) require a score ⩾ 3 on the 22-item Eating Disorder Examination-Questionnaire (EDE-Q). We compared these EDE-Q “cases” with continuous scores on a validated 7-item version of the EDE-Q (EDE-Q7) to identify an EDE-Q7 cut-off commensurate to 3 on the EDE-Q. Methods: We utilised EDE-Q scores of female university students ( N = 337) at risk of developing an eating disorder. We used a receiver operating characteristic (ROC) curve to assess the relationship between the true-positive rate (sensitivity) and the false-positive rate (1-specificity) of cases ⩾ 3. Results: The area under the curve showed outstanding discrimination of 0.94 (95% CI: .92–.97). We examined two specific cut-off points on the EDE-Q7, which included 100% and 87% of true cases, respectively. Conclusion: Given the EDE-Q cut-off for Medicare is used in conjunction with other criteria, we suggest using the more permissive EDE-Q7 cut-off (⩾2.5) to replace use of the EDE-Q cut-off (⩾3) in eligibility assessments.


2016 ◽  
Vol 24 (2) ◽  
pp. 263-272 ◽  
Author(s):  
Kosuke Imai ◽  
Kabir Khanna

In both political behavior research and voting rights litigation, turnout and vote choice for different racial groups are often inferred using aggregate election results and racial composition. Over the past several decades, many statistical methods have been proposed to address this ecological inference problem. We propose an alternative method to reduce aggregation bias by predicting individual-level ethnicity from voter registration records. Building on the existing methodological literature, we use Bayes's rule to combine the Census Bureau's Surname List with various information from geocoded voter registration records. We evaluate the performance of the proposed methodology using approximately nine million voter registration records from Florida, where self-reported ethnicity is available. We find that it is possible to reduce the false positive rate among Black and Latino voters to 6% and 3%, respectively, while maintaining the true positive rate above 80%. Moreover, we use our predictions to estimate turnout by race and find that our estimates yields substantially less amounts of bias and root mean squared error than standard ecological inference estimates. We provide open-source software to implement the proposed methodology.


2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Hai Wang ◽  
Yingfeng Cai ◽  
Xiaobo Chen ◽  
Long Chen

The use of night vision systems in vehicles is becoming increasingly common. Several approaches using infrared sensors have been proposed in the literature to detect vehicles in far infrared (FIR) images. However, these systems still have low vehicle detection rates and performance could be improved. This paper presents a novel method to detect vehicles using a far infrared automotive sensor. Firstly, vehicle candidates are generated using a constant threshold from the infrared frame. Contours are then generated by using a local adaptive threshold based on maximum distance, which decreases the number of processing regions for classification and reduces the false positive rate. Finally, vehicle candidates are verified using a deep belief network (DBN) based classifier. The detection rate is 93.9% which is achieved on a database of 5000 images and video streams. This result is approximately a 2.5% improvement on previously reported methods and the false detection rate is also the lowest among them.


Sign in / Sign up

Export Citation Format

Share Document