Hybridization of Biogeography-Based

2013 ◽  
Vol 2 (3) ◽  
pp. 86-101 ◽  
Author(s):  
Provas Kumar Roy ◽  
Dharmadas Mandal

The aim of this paper is to evaluate a hybrid biogeography-based optimization approach based on the hybridization of biogeography-based optimization with differential evolution to solve the optimal power flow problem. The proposed method combines the exploration of differential evolution with the exploitation of biogeography-based optimization effectively to generate the promising candidate solutions. Simulation experiments are carried on standard 26-bus and IEEE 30-bus systems to illustrate the efficacy of the proposed approach. Results demonstrated that the proposed approach converged to promising solutions in terms of quality and convergence rate when compared with the original biogeography-based optimization and other population based optimization techniques like simple genetic algorithm, mixed integer genetic algorithm, particle swarm optimization and craziness based particle swarm optimization.

Author(s):  
P. B. de Moura Oliveira ◽  
E. J. Solteiro Pires

This chapter addresses nature and bio-inspired metaheuristics in the context of conflict detection and resolution problems. An approach is presented for a generalization of a population-based bio-inspired search and optimization algorithm, which is depicted for three of the most well-known and firmly established methods: the genetic algorithm, the particle swarm optimization algorithm and the differential evolution algorithm. This integrated approach to a basic general population-based bio-inspired algorithm is presented for single-objective optimization, multi-objective optimization and many-objective optimization. A revision of these three main bio-inspired algorithms is presented for conflict resolution problems in diverse application areas. A bridge between feedback controller design, genetic algorithm, particle swarm optimization and differential evolution is established using a conflict resolution approach. Finally, some perspectives concerning future trends of more recent bio-inspired meta-heuristics is presented.


Author(s):  
Shailendra Aote ◽  
Mukesh M. Raghuwanshi

To solve the problems of optimization, various methods are provided in different domain. Evolutionary computing (EC) is one of the methods to solve these problems. Mostly used EC techniques are available like Particle Swarm Optimization (PSO), Genetic Algorithm (GA) and Differential Evolution (DE). These techniques have different working structure but the inner working structure is same. Different names and formulae are given for different task but ultimately all do the same. Here we tried to find out the similarities among these techniques and give the working structure in each step. All the steps are provided with proper example and code written in MATLAB, for better understanding. Here we started our discussion with introduction about optimization and solution to optimization problems by PSO, GA and DE. Finally, we have given brief comparison of these.


2011 ◽  
Vol 214 ◽  
pp. 569-572 ◽  
Author(s):  
Xio Ling Zhang ◽  
Hong Chao Yin ◽  
Zhao Yi Huo

In this paper, the flexible synthesis problem for heat exchanger network(HEN) is formulated to a mixed integer nonlinear program(MINLP) model. The objection function of the model consists of two components: First, a candidate HEN structure has to satisfy flexible criterion during input span. Second, a minimized annual cost consisting of investment cost and operating cost is investigated. The solution strategy based on particle swarm optimization(PSO) algorithm is proposed to obtain the optimal solution of the presented model. Finally, a four streams example is investigated to show the advantage of the whole proposed optimization approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-16 ◽  
Author(s):  
Xiaobing Yu ◽  
Jie Cao ◽  
Haiyan Shan ◽  
Li Zhu ◽  
Jun Guo

Particle swarm optimization (PSO) and differential evolution (DE) are both efficient and powerful population-based stochastic search techniques for solving optimization problems, which have been widely applied in many scientific and engineering fields. Unfortunately, both of them can easily fly into local optima and lack the ability of jumping out of local optima. A novel adaptive hybrid algorithm based on PSO and DE (HPSO-DE) is formulated by developing a balanced parameter between PSO and DE. Adaptive mutation is carried out on current population when the population clusters around local optima. The HPSO-DE enjoys the advantages of PSO and DE and maintains diversity of the population. Compared with PSO, DE, and their variants, the performance of HPSO-DE is competitive. The balanced parameter sensitivity is discussed in detail.


Author(s):  
Hrvoje Markovic ◽  
◽  
Fangyan Dong ◽  
Kaoru Hirota

A parallel multi-population based metaheuristic optimization framework, called Concurrent Societies, inspired by human intellectual evolution, is proposed. It uses population based metaheuristics to evolve its populations, and fitness function approximations as representations of knowledge. By utilizing iteratively refined approximations it reduces the number of required evaluations and, as a byproduct, it produces models of the fitness function. The proposed framework is implemented as two Concurrent Societies: one based on genetic algorithm and one based on particle swarm optimization both using k -nearest neighbor regression as fitness approximation. The performance is evaluated on 10 standard test problems and compared to other commonly used metaheuristics. Results show that the usage of the framework considerably increases efficiency (by a factor of 7.6 to 977) and effectiveness (absolute error reduced by more than few orders of magnitude). The proposed framework is intended for optimization problems with expensive fitness functions, such as optimization in design and interactive optimization.


2012 ◽  
Vol 498 ◽  
pp. 115-125 ◽  
Author(s):  
H. Hachimi ◽  
Rachid Ellaia ◽  
A. El Hami

In this paper, we present a new hybrid algorithm which is a combination of a hybrid genetic algorithm and particle swarm optimization. We focus in this research on a hybrid method combining two heuristic optimization techniques, genetic algorithms (GA) and particle swarm optimization (PSO) for the global optimization. Denoted asGA-PSO, this hybrid technique incorporates concepts fromGAandPSOand creates individuals in a new generation not only by crossover and mutation operations as found inGAbut also by mechanisms ofPSO. The performance of the two algorithms has been evaluated using several experiments.


Author(s):  
Kummari Rajesh ◽  
N. Visali

In this paper hybrid method, Modified Nondominated Sorted Genetic Algorithm (MNSGA-II) and Modified Population Variant Differential Evolution(MPVDE) have been placed in effect in achieving the best optimal solution of Multiobjective economic emission load dispatch optimization problem. In this technique latter, one is used to enforce the assigned percent of the population and the remaining with the former one. To overcome the premature convergence in an optimization problem diversity preserving operator is employed, from the tradeoff curve the best optimal solution is predicted using fuzzy set theory. This methodology validated on IEEE 30 bus test system with six generators, IEEE 118 bus test system with fourteen generators and with a forty generators test system. The solutions are dissimilitude with the existing metaheuristic methods like Strength Pareto Evolutionary Algorithm-II, Multiobjective differential evolution, Multi-objective Particle Swarm optimization, Fuzzy clustering particle swarm optimization, Nondominated sorting genetic algorithm-II.


Sign in / Sign up

Export Citation Format

Share Document