A simulation analysis of PV powered Inc-Cond MPPT based hybrid filter for power quality improvement

This paper proposed a Transformer less Hybrid Active Filter that upgrade the power quality in single-stage frameworks with steady renewable Photo Voltaic. It strengthens basic loads and carrying on as high-consonant impedance that does not below the critical loads. Manages energy management and power quality issues identified with electric transportation and concentrate on enhancing the electric vehicle load connected to grid. The control technique was intended to anticipation of current harmonic distortions with the nonlinear loads to control the flow of utility with no standard massive and expensive transformer. Power factor alongside AC side will likewise kept up to some esteem and furthermore dispense with the voltage distortions at the Common coupling point.

Author(s):  
R. Arulmurugan

This paper proposed a Transformer less Hybrid SEries Active Filter (THSeAF) that upgrade the power quality in single-stage frameworks with steady renewable Photo Voltaic (PV) supply. It strengthens basic loads and carrying on as high-consonant impedance that does not below the critical loads, it cleans power system and guarantees the utilization of unity power factor. Here we manages energy management and power quality issues identified with electric transportation and concentrate on enhancing the electric vehicle load connected to grid. This depends on the Power Factor Correction (PFC) change with harmonic modulation technique that will give advancement of power factor in PFC operation. The control technique was intended to anticipation of current harmonic distortions with the nonlinear loads to control the flow of utility with no standard massive and expensive transformer. Power factor alongside AC side will likewise kept up to some esteem and furthermore dispense with the voltage distortions at the Common coupling point. Here we protecting sensitive loads from voltage twists, swells and sags as for control framework, without the arrangement transformer it is worthwhile for a modern usage. This paper was done with 2-kVA control showing the adequacy of the current topology.


2021 ◽  
Vol 13 (2) ◽  
pp. 505
Author(s):  
Sumaya Jahan ◽  
Shuvra Prokash Biswas ◽  
Md. Kamal Hosain ◽  
Md. Rabiul Islam ◽  
Safa Haq ◽  
...  

The use of different control techniques has become very popular for controlling the performance of grid-connected photovoltaic (PV) systems. Although the proportional-integral (PI) control technique is very popular, there are some difficulties such as less stability, slow dynamic response, low reference tracking capability, and lower output power quality in solar PV applications. In this paper, a robust, fast, and dynamic proportional-integral resonance controller with a harmonic and lead compensator (PIR + HC + LC) is proposed to control the current of a 15-level neutral-point-clamped (NPC) multilevel inverter. The proposed controlled is basically a proportional-integral resonance (PIR) controller with the feedback of a harmonic compensator and a lead compensator. The performance of the proposed controller is analyzed in a MATLAB/Simulink environment. The simulation result represents admirable performance in terms of stability, sudden load change response, fault handling capability, reference tracking capability, and total harmonic distortion (THD) than those of the existing controllers. The responses of the inverter and grid outlets under different conditions are also analyzed. The harmonic compensator decreases the lower order harmonics of grid voltage and current, and the lead compensator provides the phase lead. It is expected that the proposed controller is a dynamic aspirant in the grid-connected PV system.


2014 ◽  
Vol 573 ◽  
pp. 690-695
Author(s):  
Ragavan Saravanan ◽  
P.S. Manoharan

The Unified Power Quality Conditioner plays an important role in the constrained delivery of electrical power from a source to an isolated pool of load or from a source to the grid. This article is presented new control approaches for both series and shunt inverter. The proposed control algorithm for series and shunt converters based on FLC and synchronous reference frame theory respectively. The proposed approach eliminates the total harmonic distortions (THD) efficiently, and mitigates sag and swell present in the linear and nonlinear loads.


Sign in / Sign up

Export Citation Format

Share Document