Line Segment-Based Clustering Approach With Self-Organizing Maps

2021 ◽  
Vol 14 (4) ◽  
pp. 33-44
Author(s):  
G. Chamundeswari ◽  
G. P. S. Varma ◽  
C. Satyanarayana

Clustering techniques are used widely in computer vision and pattern recognition. The clustering techniques are found to be efficient with the feature vector of the input image. So, the present paper uses an approach for evaluating the feature vector by using Hough transformation. With the Hough transformation, the present paper mapped the points to line segment. The line features are considered as the feature vector and are given to the neural network for performing clustering. The present paper uses self-organizing map (SOM) neural network for performing the clustering process. The proposed method is evaluated with various leaf images, and the evaluated performance measures show the efficiency of the proposed method.

2008 ◽  
Vol 18 (03) ◽  
pp. 233-256 ◽  
Author(s):  
ALIREZA FATEHI ◽  
KENICHI ABE

The MMSOM identification method, which had been presented by the authors, is improved to the multiple modeling by the irregular self-organizing map (MMISOM) using the irregular SOM (ISOM). Inputs to the neural networks are parameters of the instantaneous model computed adaptively at every instant. The neural network learns these models. The reference vectors of its output nodes are estimation of the parameters of the local models. At every instant, the model with closest output to the plant output is selected as the model of the plant. ISOM used in this paper is a graph of all the nodes and some of the weighted links between them to make a minimum spanning tree graph. It is shown in this paper that it is possible to add new models if the number of models is initially less than the appropriate one. The MMISOM shows more flexibility to cover the linear model space of the plant when the space is concave.


2008 ◽  
Vol 18 (04) ◽  
pp. 347-370 ◽  
Author(s):  
ALIREZA FATEHI ◽  
KENICHI ABE

The MMSOM identification method, which had been presented by the authors, is improved to the multiple modeling by the irregular self-organizing map (MMISOM) using the irregular SOM (ISOM). Inputs to the neural networks are parameters of the instantaneous model computed adaptively at every instant. The neural network learns these models. The reference vectors of its output nodes are estimation of the parameters of the local models. At every instant, the model with closest output to the plant output is selected as the model of the plant. ISOM used in this paper is a graph of all the nodes and some of the weighted links between them to make a minimum spanning tree graph. It is shown in this paper that it is possible to add new models if the number of models is initially less than the appropriate one. The MMISOM shows more flexibility to cover the linear model space of the plant when the space is concave.


2014 ◽  
Vol 3 (2) ◽  
pp. 10
Author(s):  
Anna Sedrak Hovakimyan ◽  
Siranush Gegham Sargsyan ◽  
Arshak Nazaryan

Human iris is  a good subject of biometrical identification, since  iris patterns are unique like fingerprints. Iris is well protected against damage, unlike fingerprints, which can be harder to recognize after years of certain types of manual labor.A problem of iris recognition is considered in the paper. In machine learning, pattern recognition is the assignment of a label to a given input value. Pattern classification is an example of pattern recognition: it attempts to assign each input value to one of a given set of classes. Nowadays various techniques are used for this purpose, and in particular artificial neural networks.For iris recognition problem solving  Kohenen Self Organizing Maps are suggested to use. The software for iris recognition is developed  which is customizable and allows to select the appropriate parameters of the neural network to obtain the most satisfactory results. The developed Self-Organizing Map Library of classes can be used for various kinds of object classification problem solving as well as for any problems suitable to solve with Self-Organizing Maps.


2020 ◽  
Vol 1 ◽  
pp. 62-69 ◽  
Author(s):  
Victor Skuratov ◽  
Konstantin Kuzmin ◽  
Igor Nelin ◽  
Mikhail Sedankin

Today, there is a serious need to improve the performance of algorithms for detecting objects in images. This process can be accelerated with the help of preliminary processing, having found areas of interest on the images where the probability of object detection is high. To this end, it is proposed to use the algorithm for distinguishing the boundaries of objects using the Sobel operator and Kohonen self-organizing maps, described in this paper and shown by the example of determining zones of interest when searching and recognizing objects in satellite images. The presented algorithm allows 15–100 times reduction in the amount of data arriving at the convolutional neural network, which provides the final recognition. Also, the algorithm can significantly reduce the number of training images, since the size of the parts of the input image supplied to the convolution network is tied to the image scale and equal to the size of the largest recognizable object, and the object is centered in the frame. This allows to accelerate network learning by more than 5 times and increase recognition accuracy by at least 10 %, as well as halve the required minimum number of layers and neurons of the convolutional network, thereby increasing its speed.


Symmetry ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 299
Author(s):  
Birgitta Dresp-Langley ◽  
John M. Wandeto

Symmetry in biological and physical systems is a product of self-organization driven by evolutionary processes, or mechanical systems under constraints. Symmetry-based feature extraction or representation by neural networks may unravel the most informative contents in large image databases. Despite significant achievements of artificial intelligence in recognition and classification of regular patterns, the problem of uncertainty remains a major challenge in ambiguous data. In this study, we present an artificial neural network that detects symmetry uncertainty states in human observers. To this end, we exploit a neural network metric in the output of a biologically inspired Self-Organizing Map Quantization Error (SOM-QE). Shape pairs with perfect geometry mirror symmetry but a non-homogenous appearance, caused by local variations in hue, saturation, or lightness within and/or across the shapes in a given pair produce, as shown here, a longer choice response time (RT) for “yes” responses relative to symmetry. These data are consistently mirrored by the variations in the SOM-QE from unsupervised neural network analysis of the same stimulus images. The neural network metric is thus capable of detecting and scaling human symmetry uncertainty in response to patterns. Such capacity is tightly linked to the metric’s proven selectivity to local contrast and color variations in large and highly complex image data.


2017 ◽  
Vol 4 (2) ◽  
pp. 198
Author(s):  
Fatma Agus Setyanngsih

<p><em>The prediction to determine the rainfall in Pontianak is much needed. One of them is using a neural network algorithm using SOM (Self Organizing Maping) with the data used in January 2010-2013. The purpose of this study was to determine the rainfall prediction in the city of Pontianak with parameters of air temperature, relative humidity, air pressure and wind speed. The results showed that the value of MSE is obtained when studying the data network prediction in January of 2010 until 2013 using the Neural Network-SOM learning process with the amount of 1 neuron and using 124 datas, with MSE value 0,0148.</em><strong> </strong></p><p><strong><em>Keywords</em></strong><em>: </em><em>Rainfall, Neural Network, Time Series, Self Organizing Map</em></p><p><em>Prediksi untuk mengetahui curah hujan yang terjadi di Pontianak sangat dibutuhkan salah satunya yaitu menggunakan algoritma jaringan syaraf tiruan dengan pengelompokkannya menggunakan SOM (Self Organizing Map) dengan data yang digunakan adalah data di bulan januari tahun 2010-2013. Tujuan dari penelitian ini adalah untuk mengetahui prediksi curah hujan di kota Pontianak dengan parameter suhu udara, kelembababn relative, tekanan udara dan kecepatan angin. Hasil penelitian menunjukkan bahwa nilai MSE ini didapatkan saat jaringan mempelajari data prediksi pada bulan januari di tahun 2010 sampai tahun 2013 dengan menggunakan proses pembelajaran JST SOM dengan jumlah neuron 1 dan menggunakan 124 data, dengan nilai MSE 0,0148. </em></p><p><em></em><em><strong><em>Kata kunci</em></strong><strong><em>:</em></strong><em> </em><em>Curah Hujan, Jaringan Syaraf Tiruan, Time Series, Self Organizing Map</em></em></p>


1994 ◽  
Vol 05 (04) ◽  
pp. 357-362 ◽  
Author(s):  
JING WU ◽  
HONG YAN ◽  
ANDREW CHALMERS

In this paper, we present a two-layer self-organizing neural network based method for handwritten digit recognition. The network consists of a base layer self-organizing map and a set of corresponding maps in the second layer. The input patterns are partitioned into subspace in the first layer. Patterns in a subspace are led to the second layer and a corresponding map is built according to the first layer performance. In the classification process, each pattern searches for several closest nodes from the base map and then it is classified into a specified class by determining the nearest model of the corresponding maps in the second layer. The new method yielded higher accuracy and faster performance than the ordinary self-organizing neural network.


Author(s):  
Marcos Santos da Silva ◽  
Edmar Ramos de Siqueira ◽  
Olívio Teixeira ◽  
Maria Manos ◽  
Antônio Monteiro

This work assessed the capacity of the self-organizing map, an unsupervised artificial neural network, to aid the process of territorial design through visualization and clustering methods applied to a multivariate geospatial temporal dataset. The method was applied in the case study of Sergipe‘s institutional regional partition (Territories of Identity). Results have shown that the proposed method can improve the exploratory spatial-temporal analysis capacity of policy makers that are interested in territorial typology. A new partition for rural planning was elaborated and confirmed the coherence of the Territories of Identity.


2000 ◽  
Vol 367 (6) ◽  
pp. 586-589 ◽  
Author(s):  
A. Lopez-Molinero ◽  
A. Castro ◽  
J. Pino ◽  
J. Perez-Arantegui ◽  
J. R. Castillo

Author(s):  
Birgitta Dresp-Langley ◽  
John M. Wandeto

Symmetry in biological and physical systems is a product of self-organization driven by evolutionary processes, or mechanical systems under constraints. Symmetry-based feature extraction or representation by neural networks may unravel the most informative contents in large image databases. Despite significant achievements of artificial intelligence in recognition and classification of regular patterns, the problem of uncertainty remains a major challenge in ambiguous data. In this study, we present an artificial neural network that detects symmetry uncertainty states in human observers. To this end, we exploit a neural network metric in the output of a biologically inspired Self-Organizing Map, the Quantization Error (SOM-QE). Shape pairs with perfect geometric mirror symmetry but a non-homogenous appearance, caused by local variations in hue, saturation, or lightness within and/or across the shapes in a given pair produce, as shown here, longer choice RT for ‘yes’ responses relative to symmetry. These data are consistently mirrored by the variations in the SOM-QE from unsupervised neural network analysis of the same stimulus images. The neural network metric is thus capable of detecting and scaling human symmetry uncertainty in response to patterns. Such capacity is tightly linked to the metric’s proven selectivity to local contrast and color variations in large and highly complex image data.


Sign in / Sign up

Export Citation Format

Share Document