Numerical Simulation of the Stress Field of Thick 7B04 Aluminum Alloy Board during Continuous Manufacture Procedure

Author(s):  
Hong Yuan Fang ◽  
Cheng Iei Fan
2007 ◽  
Vol 127 ◽  
pp. 259-264
Author(s):  
Hong Yuan Fang ◽  
Cheng Iei Fan

Numerical simulation method is employed in the article to analyze the stress field of thick 7B04 aluminum alloy board during manufacturing procedure of solution treatment, calendaring and stretching. The simulation results show that the surface of the board endures compressive stress while the core segment endures tensile stress, and the distribution of the stress is very inhomogeneous. The calendaring procedure helps to decrease the stress and redistribute the stress uniformly, but it also leads to stress concentration at the two ends of the board, which engenders bad influence on the subsequent processing. The board deforms plastically when being stretched, thus the stress decreases greatly and is redistributed uniformly.


2014 ◽  
Vol 34 (4) ◽  
pp. 0414003
Author(s):  
罗密 Luo Mi ◽  
罗开玉 Luo Kaiyu ◽  
王庆伟 Wang Qingwei ◽  
鲁金忠 Lu Jinzhong

2015 ◽  
Author(s):  
Mingxin Li ◽  
Guangyong Jin ◽  
Wei Zhang ◽  
Guibo Chen ◽  
Juan Bi

2016 ◽  
Vol 851 ◽  
pp. 163-167
Author(s):  
Dong Yan Lin ◽  
Yi Li

The hydroforming process of the aluminum alloy panel was simulated by the software DYNAFORM. The effects of process parameters (blank holder force, depth of panel and height of draw bead) on springback of the aluminum alloy were investigated. The max springback of the panel was analyzed by weighted scoring method. Then the process parameters were synthetically optimized for the max positive and negative springback. The results showed that the height of draw bead affects obviously the comprehensive springback of the panel. The optimization of the process parameters obtained by the orthogonal experiment can effectively reduce the max springback of the panel.


2013 ◽  
Vol 864-867 ◽  
pp. 2418-2421
Author(s):  
Li Yang ◽  
Jian Lin Li ◽  
Shi Wei Luo

The tectonic stress field plays an important role in the research of crustal stability, fault activity and the geological disaster effect. On the basis of related geological data, ANSYS and FLAC3D are applied in this paper to set up a reasonable geological structure model and boundary conditions, aiming at making a numerical simulation analysis of tectonic stress field in the southeast of the Qinghai-Tibet plateau. The result and the measured data fit better, which provides a reference for the further study of the project.


2011 ◽  
Vol 121-126 ◽  
pp. 325-329
Author(s):  
Bin Feng He

The FDM numerical simulation software View Cast system was employed to the counter-pressure casting of aluminum alloy large-scale thin-section casting. By analyzing the mold filling and solidification, the distribution of liquid fraction, temperature field were studied. The potential shrinkage defects were predicted to be formed at the top of the casting. A solution towards reducing such defects has been presented. The feeding capacity of the riser was improved. Analysis on the shrinkage proved that the improved riser is an effective method for reduction of defects.


Sign in / Sign up

Export Citation Format

Share Document