Fabrication and Evaluation of AlN–SiC Solid Solutions with p-Type Electrical Conduction

Author(s):  
Ryota Kobayashi ◽  
Junichi Tatami ◽  
Toru Wakihara ◽  
Katsutoshi Komeya ◽  
Takeshi Meguro ◽  
...  
2008 ◽  
Vol 403 ◽  
pp. 39-42 ◽  
Author(s):  
Ryota Kobayashi ◽  
Junichi Tatami ◽  
Toru Wakihara ◽  
Katsutoshi Komeya ◽  
Takeshi Meguro ◽  
...  

AlN–SiC solid solutions with p-type electrical conduction were fabricated with the addition of small amounts of Al and C. Powder mixtures of AlN and SiC with small amounts of Al and C (below 10 mol%) were consolidated by spark plasma sintering (SPS) at 2000°C for 10 min under 1 atm Ar, and then heat-treated at 2200°C for 3 h in an Ar flow to afford 2H AlN–SiC solid solutions. The relative densities of the 50AlN-50SiC-Al4C3 (A50-1AC) and 50AlN-50SiC-3Al4C3 (A50-3AC) samples were about 95%, whereas that of the 75AlN-25SiC-Al4C3 (A75-1AC) sample was about 86%. X-ray diffractometry (XRD) analysis showed that the samples comprised only the 2H phase, and except in the case of the A50-3AC sample, no diffraction peaks of Al and C were observed. Although the samples without the additives (Al and C) were electrical insulators, addition of Al and C introduced p-type semiconduction. The electrical conductivities at 300°C of the A50-1AC and A50-3AC samples were about 30 and 100 S/m, respectively, whereas that of the A75-1AC sample was about 10–1 S/m. It was found that addition of Al and C brought about electrical conduction in AlN–SiC solid solutions.


2019 ◽  
Vol 7 (3) ◽  
pp. 1045-1054 ◽  
Author(s):  
Hasbuna Kamila ◽  
Prashant Sahu ◽  
Aryan Sankhla ◽  
Mohammad Yasseri ◽  
Hoang-Ngan Pham ◽  
...  

Figure of merit zT mapping of p-Mg2Si1−xSnx with respect to carrier concentration.


2019 ◽  
Vol 7 (2) ◽  
pp. 434-440 ◽  
Author(s):  
Ting Zhou ◽  
Jun Mao ◽  
Jing Jiang ◽  
Shaowei Song ◽  
Hangtian Zhu ◽  
...  

The thermoelectric property of YbMg2Bi2–Mg3Bi2 solid solution is studied.


2020 ◽  
Vol 80 (10) ◽  
Author(s):  
S. Bhattarai ◽  
R. Panth ◽  
W.-Z. Wei ◽  
H. Mei ◽  
D.-M. Mei ◽  
...  

AbstractFor the first time, electrical conduction mechanisms in the disordered material system is experimentally studied for p-type amorphous germanium (a-Ge) used for high-purity Ge detector contacts. The localization length and the hopping parameters in a-Ge are determined using the surface leakage current measured from three high-purity planar Ge detectors. The temperature dependent hopping distance and hopping energy are obtained for a-Ge fabricated as the electrical contact materials for high-purity Ge planar detectors. As a result, we find that the hopping energy in a-Ge increases as temperature increases while the hopping distance in a-Ge decreases as temperature increases. The localization length of a-Ge is on the order of $$2.13^{-0.05}_{+0.07}\mathrm{{A}}^\circ $$ 2 . 13 + 0.07 - 0.05 A ∘ to $$5.07^{-0.83}_{+2.58}\mathrm{{A}}^\circ $$ 5 . 07 + 2.58 - 0.83 A ∘ , depending on the density of states near the Fermi energy level within bandgap. Using these parameters, we predict that the surface leakage current from a Ge detector with a-Ge contacts can be much smaller than one yocto amp (yA) at helium temperature, suitable for rare-event physics searches.


Sign in / Sign up

Export Citation Format

Share Document