Features of Jianshanchong Klippe and its Control to Gas Geology at Qingshan Coal Mine, Jiangxi Province

2012 ◽  
Vol 164 ◽  
pp. 501-505
Author(s):  
Zhi Gen Zhao ◽  
Jia Chen ◽  
Jia Ping Yan

The coal and gas outburst is serious at Qingshan Coal Mine of Jiangxi Province, so it is of significance to research the features of Jianshanchong klippe and its control to gas geology. The research reveals that: Jianshanchong klippe is distributed from the east boundary of Qingshan Coal Mine to No. 45 Exploration Line, its transverse profile is like a funnel while its longitudinal profile is like a wedge, northwest side of the klippe is thicker and deeper while southeast side is thinner and more shallow. Because of the cover and insert of Jianshanchong klippe, the structure of coal-bearing strata is more complex, some secondary folds are formed, and also, the coal seam is changed greatly, the tectonic coal is well developed and the coal seam is suddenly thickening or thinning. Due to the effect of Jianshanchong klippe, the coal and gas outbursts occur in the area of secondary folds, thicker coal seams or tectonic coals. Concerning the prediction of gas geology in deep area, in view of the facts including simpler structure, stable coal seam and decreased thickness, the gas emission rate and the coal and gas outburst will decrease in Fifth and Sixth Mining Level than that in Second and Third Mining Level

2021 ◽  
pp. 014459872110558
Author(s):  
Chunhua Zhang ◽  
Dengming Jiao ◽  
Ziwen Dong ◽  
Hongyu Zhang

Risk assessment is an effective method of accident prevention and is vital to actual production. To reduce the risk of mining accidents and realize green and sustainable coal mining, a coal and gas outburst risk assessment method based on the improved comprehensive weight and cloud theory is proposed. The proposed method can effectively solve problems of fuzziness and randomness, index weight deviation, and correlation between indexes in risk assessment, as well as improve the accuracy and rationality of assessment. Nine influencing factors that correspond to coal seam occurrence and geological characteristics, coal seam physical characteristics, and gas occurrence characteristics are selected to establish the risk assessment index system of coal and gas outburst. Using the improved group G1 method and improved CRITIC method to obtain the subjective and objective weights, the ideal point method is used to obtain the comprehensive weight. Using the normal cloud model of cloud theory and the comprehensive weight to assess engineering examples 1–2, the No. 3 coal seam of a mine in Shanxi, and the 21 coal seam of a mine in Henan, the risk grade of coal and gas outburst is determined and then compared with the assessment results obtained from the engineering examples and the actual situations of the above mentioned coal seams. The results show that the coal and gas outburst risks of engineering examples 1–2, No. 3 coal seam, and 21 coal seam are of grades IV, IV, II, and IV, respectively. The No. 3 coal seam and 21 coal seam belong to lower and higher risk categories, respectively. The assessment results are consistent with the actual situation of the coal seams, thereby confirming the rationality and accuracy of the proposed method. This study expands the methods of coal and gas outburst risk assessment and facilitates the formulation of effective preventive measures.


2012 ◽  
Vol 164 ◽  
pp. 511-516
Author(s):  
Zhi Gen Zhao ◽  
Ming Ming Zhang ◽  
Jia Ping Yan

The coal and gas outburst is very serious in Yongshanqiao Mining Area of Jiangxi province, so it is of significance to research the characteristics of gas geology and their controlling factors. Based on the statistical analysis of gas data during coal exploration and coal mining, the regularity is revealed of the characteristics of gas geology in Yongshanqiao Mining Area. From east to west and from south to north, the relative gas emission rate and the absolute gas emission rate tend to increase, the frequency and intensity of coal and gas outbursts rise, the gas contents also tend to increase. The controlling factors of characteristics of gas geology in Yongshanqiao Mining Area are researched in this paper. The work reveals that: corresponding to characteristics of gas geology, the distribution characteristics of coal quality, the characteristics of geological structure and the lithology characteristics of the roof and the floor of the coal seams in Yongshanqiao Mining Area present regular changes, and are all favorable to gas generation and gas preservation. So, the characteristics of gas geology in Yongshanqiao Mining Area are the result of comprehensive effects by geological factors


2012 ◽  
Vol 524-527 ◽  
pp. 325-329 ◽  
Author(s):  
Shou Tao Hu ◽  
Bai Sheng Nie ◽  
Ming Ju Liu ◽  
Yan Wei Liu ◽  
Xiang Chun Li ◽  
...  

According to the questions of long eliminating coal and gas outburst period, large projects and slow driving came from the regional measurement of drilling hole ,the paper select 2371 (1) rail transport roadway as experiment for using along seam long drilling as a regional measurement to eliminate coal and gas outburst. Since the regional measurement of along seam long drilling had been carried out, the remaining gas content decreased more than 60%, max Smax was 5.4kg/m, max qmax was 2.01/min.Both Smax and qmax were not beyond the standard. Gas concentrations were not overrun. Gas emission decreased in the roadway afterward. The regional measurement eliminated the risk of coal and gas outburst in effect. Heading face promoted 423m forward safely. The max January footage could reach 120m.Achieve driving of heading face safely and fast.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Liwen He ◽  
Yingcheng Dai ◽  
Sheng Xue ◽  
Chunshan Zheng ◽  
Baiqing Han ◽  
...  

Effective gas control is of significance for safe efficient coal mining in Haizi Coal Mine and other mines with similar geological conditions. This study concentrates on gas control theories and techniques in multiple coal seams of Haizi Coal Mine (No. 7, No. 8, No. 9, and No. 10 coal seam from top to bottom). To minimize risk of high gas emission and outburst hazard, No. 10 seam was mined first as a protective seam prior to the mining of its overlying outburst-prone No. 7, No. 8, and No. 9 seam. Four gas drainage measures were determined for gas control, including cross-measure boreholes into overlying coal seams, surface goaf wells, roof boreholes, and roof gas drainage roadway. These gas control measures, if implemented through entire coal seam extraction, would be possibly uneconomic. An investigation was undertaken to analyze effects of those four measures on gas emission, methane concentration, and gas drainage quantity in No. 2 1024 mining panel of No. 10 seam. Results indicate that the highly expensive gas drainage measure of a roof roadway has poor drainage performance and could be effectively replaced by roof boreholes. When adopting the optimized combination of gas drainage measures, drainage efficiency of No. 7 seam, No. 8 seam, and No. 9 seam could reach 58.64% and decrease gas pressure to be below 0.74 MPa. Outcomes of this study could provide beneficial guidance not only for gas drainage design optimization in Haizi Coal Mine but also for other multiple-seam mines with similar mining and geological conditions, for increasing gas drainage efficiency and guaranteeing mining safety.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Wei Wang ◽  
Yanzhao Wei ◽  
Minggong Guo ◽  
Yanzhi Li

The current study aims to analyze the principles of integrated technology of explosion to tackle the problems of coal seam high gas content and pressure, developed faults, complex structure, low coal seam permeability, and high outburst risk. Based on this, we found through numerical simulation that as the inclination of the coal seam increases, the risk of coal and gas outburst increases during the tunneling process. Therefore, it is necessary to take measures to reduce the risk of coal and gas outburst. We conducted field engineering experiments. Our results show that the synergistic antireflection technology of hydraulic fracturing and deep-hole presplitting blasting has a significant antireflection effect in low-permeability coal seams. After implementing this technology, the distribution of coal moisture content was relatively uniform and improved the influence range of direction and tendency. Following 52 days of extraction, the average extraction concentration was 2.9 times that of the coal seam gas extraction concentration under the original technology. The average scalar volume of single hole gas extraction was increased by 7.7 times. Through field tests, the purpose of pressure relief and permeability enhancement in low-permeability coal seams was achieved. Moreover, the effect of gas drainage and treatment in low-permeability coal seams was improved, and the applicability, effectiveness, and safety of underground hydraulic fracturing and antireflection technology in low-permeability coal seams were verified. The new technique is promising for preventing and controlling gas hazards in the future.


2011 ◽  
Vol 121-126 ◽  
pp. 2607-2613
Author(s):  
Qian Ting Hu ◽  
Wen Bin Wu ◽  
Guo Qiang Cheng

Outburst cavity formed during coal and gas outburst can be pear shaped, elliptical, or just like an irregularly elongated ellipsoid, its capacity is always smaller than the volume of ejected coal. And the gas emission quantity is almost 4 to 10 times as gas content in ejected coal. These are two different expressions of the same problem. To find the reasons for the decrease of outburst cavity volume and the increase of gas emission quantity per ton, by using the finite element code ANSYS, the damage zone and the failure zone of the outburst cavity were determined based on the static and dynamic combination method. In this paper, the reason for the decrease of the outburst volume was explained.


2015 ◽  
Vol 713-715 ◽  
pp. 314-318
Author(s):  
Chun Li Yang ◽  
Yi Liang Zhao ◽  
Xiang Chun Li ◽  
Yang Yang Meng ◽  
Fei Fei Zhu

Gas emission happens after coal and gas outburst, and it could cause secondary disasters in the roadway. Therefore it is necessary to research gas concentration distribution law in the roadway after coal and gas outburst, and theoretical basis for avoiding the occurrence of secondary disasters could be provided. Based on the above, Fluent is used to simulate gas concentration distribution law in the roadway during outburst. The research results show that gas velocity of the initial stage is larger in the whole process of gas outburst and gas emission impacts opposite walls in the form of jet in the roadway intersection. The flow changes direction and moves along the main airway and return airway. It produces countercurrent along the main airway. Because the pressure in the main airway is high, gas migration velocity becomes zero after a certain distance and is "back" to return airway. The higher the outburst velocity is, the longer the flow length is. Gas concentration variation with two kinds of different outburst intensities and position are regressed and it shows that correlation coefficients of power function are the highest. The research results have a certain theoretical value to prevent the occurrence of secondary disasters after coal and gas outburst.


2021 ◽  
Author(s):  
Qingyi Tu ◽  
Sheng Xue ◽  
Yuanping Cheng ◽  
Wei Zhang ◽  
Gaofeng Shi ◽  
...  

Abstract Soft tectonic coal commonly exists in coal and gas outburst zones. The physical simulation experiment was carried out to reproduce the influences of soft coal area on the outburst, and the guiding action mechanism of soft tectonic coal on the outburst was investigated. This study concludes that the amount of outburst coal in the experiments of group with local existence of soft coal area are relatively lower. The outburst coal amount (3.8035 kg) and relative outburst intensity (21.02%) in the GR5# experiment were both lower than that in the GN6# experiment of control group. However, the outburst coal in the experiments of group with local existence of soft coal area could be commonly migrated to a long distance, the maximum throwing distances in the three experiments were all over 16.73 m, reaching as high as 20.10 m. Under the gas pressure of 0.30 MPa in the group with local existence of soft coal area, the outburst coal amount (2.7355 kg) was smaller than the amount (2.803 kg) of pulverized coal filled, and the 2.0 cm coal pillar experiences failure only nearby the outburst mouth. As the gas pressure increases, the failure degree of the coal pillar becomes higher and higher until complete failure. The outburst development sequence is changed due to the existence of the soft tectonic soft area. Once the sealing conditions are destructed, the outburst firstly develops in the soft tectonic coal area. Nevertheless, sufficient energy is supplied to transport the coal mass in the soft tectonic coal area to a farther distance, while the residual outburst energy can just result in the outburst of a small quantity of coal masses in the normal area. This research will be of great scientific significance for explaining the soft tectonic coal-induced change of outburst starting and development sequence.


Sign in / Sign up

Export Citation Format

Share Document