Computer Simulation of the Magnesium Silicide Polymorphs

2012 ◽  
Vol 170-173 ◽  
pp. 3312-3315
Author(s):  
Dong Chen ◽  
Chao Xu

The anti-cotunnite magnesium silicide was constructed, and its absorption coefficient, dielectric function and loss function have been investigated through the plane-wave pseudo- potential calculations based on the density functional theory. In our scheme, we consider the Mg2Si crystal without defects or cracks. Significant features have been observed for the optical properties in the low-energy region and the high-energy region. The main focus of this paper is to determine the high-pressure optical properties of Mg2Si and find out if this material can be used as high-performance thermoelectric devices.

2013 ◽  
Vol 321-324 ◽  
pp. 495-498 ◽  
Author(s):  
Dong Chen ◽  
Chao Xu

The reflectivity, loss function, refractive index, extinction coefficient and dielectric function of the LaNi5and LaNi4.5Sn0.5intermetallic compounds are investigated through the plane-wave pseudo-potential method based on the density functional theory. The effects of Sn impurity are discussed and some interesting features are found in the low frequency region. Some important optical properties such as static dielectric constant and static refractive index are obtained. The equation [n (0)]2=ε1(0)is satisfied according to our calculation, which indicates that our results are correct and reasonable. Nevertheless, the calculated results need to be testified in the future due to the lack of experimental data.


2014 ◽  
Vol 900 ◽  
pp. 217-221
Author(s):  
Xing Xiang Ruan ◽  
Xian Hui Zhong ◽  
Fu Chun Zhang ◽  
Wei Hu Zhang

A detailed theoretical study of electronic structure and optical properties of GaN under pressure was performed by the first-principles calculations of plane wave ultra-soft pseudo-potential method based on the density functional theory (DFT). The results indicate that Ga-N bond length becomes shorter and the valence bonds shift towards the low energy while the conduction bands towards high energy, the band gap becomes wider with the pressure increasing, and theoretical studies explained the relationship between the band edges, energy gap of GaN and pressure. In addition, the peak in band was cracked slightly, and the Ga 3d-N 2p hybridization was enhanced.


2010 ◽  
Vol 663-665 ◽  
pp. 195-198 ◽  
Author(s):  
Xue Mei Cai ◽  
Yuan Luo

The electronic and optical properties of hexagonal wurtzite AlN doped with Zn and Mg are studied based on the density functional theory. The density of states, dielectric function and absorption spectra are calculated using plane-wave ultrasoft pseudo-potential and the generalized gradient approximation (GGA). The absorption peaks are found during 0-13 eV and 43-48 eV in Mg doped AlN, while in Zn doped AlN, only during 0-15eV. The absorption peak about 43-48 eV found in Mg doped AlN is due to the transition of the deep 2p energy level in Mg to conduction band. The first peak of the dielectric imaginary part is related to the transition of the doped atoms. The peak of the dielectric imaginary part and absorption peak appears about 8 eV is due to the transition of N 2p to Al 3p state. Results show that the electronic and the optical properties of hexagonal wurtzite AlN are directly related to the electronic structure of the impurities in the crystal.


Author(s):  
Md. Lokman Ali ◽  
Md. Zahidur Rahaman ◽  
Md. Atikur Rahman

The influence of pressure on the structural and elastic properties of ScM ([Formula: see text], Cu, Ag, Hg) compounds has been investigated by using ab initio approach pseudopotential plane-wave method based on the density functional theory within the generalized gradient approximation (GGA). The optical properties have been investigated under zero pressure. It is found that the optimized lattice parameters for all metals are in good agreement with the experimental data and other available theoretical values. We obtained three independent elastic constants [Formula: see text] ([Formula: see text] and [Formula: see text]) and various elastic parameters such as bulk modulus [Formula: see text], shear modulus [Formula: see text], Young’s modulus [Formula: see text], Poisson’s ratio [Formula: see text] and anisotropy factor [Formula: see text] as a function of pressure. In addition, the mechanical stability and ductile/brittle nature are also investigated from the calculated elastic constants. The study of optical properties reveals that all of these compounds possess good absorption coefficient in the high energy region and the refractive index of all these compounds is higher in the low energy region and gradually decreased in the high energy region. All these calculations have been carried out using the CASTEP computer code.


2013 ◽  
Vol 760-762 ◽  
pp. 425-428
Author(s):  
Wei Hua Wang ◽  
Guo Zhong Zhao

The electronic properties and the optical properties of wurtzite InN are studied by the first-principles calculations based on the density functional theory. The calculations are based on the Generalized-Gradient Approximation (GGA) and implemented in Plane Wave Self-Consist Field (PWSCF). The optical properties of InN are investigated by the pseudo-potential method with PBEsol-GGA within the WIEN2K program. Band structure, density of states and dielectric functions are calculated detailedly. The energy transitions are observed and compared existing data at critical points. Moreover the new peak in between the region 12 eV to 14 eV should be due to transitions from the In-5p states to the N-2s states.


In this article, we have studied the mechanical, electronic, and optical features of ThCr2Si2- type compound SrCo2Si2. The investigation has been done by using the first-principles method depend on the density functional theory (DFT) and the calculations were completed with the Cambridge Serial Total Energy Package (CASTEP) code. The optimized lattice parameters are well in accord with the existing synthesized values. The investigated elastic constants for this compound are positive which ensured the mechanical stability of this phase. The calculated values of Pugh’s ratio and Poisson’s ratio ensure the brittle character of SrCo2Si2. The universal anisotropic constant AU ensures the anisotropic behavior of SrCo2Si2.The softness nature of SrCo2Si2 is confirmed by the bulk modulus calculations. The overlapping of the valence band and conduction band near the Fermi level indicates the metallic nature of SrCo2Si2. At the Fermi level, the major contribution comes from Co-3d and Si-3p states. The large reflectivity in the high-energy region indicates that this compound might be useful as coating materials for reducing solar heating. The photoconductivity and absorption begins with zero photon energy which also ensures the metallic nature of SrCo2Si2.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Yun Li ◽  
Xiaobo Li ◽  
Shidong Zhang ◽  
Liemao Cao ◽  
Fangping Ouyang ◽  
...  

AbstractStrain engineering has become one of the effective methods to tune the electronic structures of materials, which can be introduced into the molecular junction to induce some unique physical effects. The various γ-graphyne nanoribbons (γ-GYNRs) embedded between gold (Au) electrodes with strain controlling have been designed, involving the calculation of the spin-dependent transport properties by employing the density functional theory. Our calculated results exhibit that the presence of strain has a great effect on transport properties of molecular junctions, which can obviously enhance the coupling between the γ-GYNR and Au electrodes. We find that the current flowing through the strained nanojunction is larger than that of the unstrained one. What is more, the length and strained shape of the γ-GYNR serves as the important factors which affect the transport properties of molecular junctions. Simultaneously, the phenomenon of spin-splitting occurs after introducing strain into nanojunction, implying that strain engineering may be a new means to regulate the electron spin. Our work can provide theoretical basis for designing of high performance graphyne-based devices in the future.


Materials ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1404
Author(s):  
Yunfei Yang ◽  
Changhao Wang ◽  
Junhao Sun ◽  
Shilei Li ◽  
Wei Liu ◽  
...  

In this study, the structural, elastic, and thermodynamic properties of DO19 and L12 structured Co3X (X = W, Mo or both W and Mo) and μ structured Co7X6 were investigated using the density functional theory implemented in the pseudo-potential plane wave. The obtained lattice constants were observed to be in good agreement with the available experimental data. With respect to the calculated mechanical properties and Poisson’s ratio, the DO19-Co3X, L12-Co3X, and μ-Co7X6 compounds were noted to be mechanically stable and possessed an optimal ductile behavior; however, L12-Co3X exhibited higher strength and brittleness than DO19-Co3X. Moreover, the quasi-harmonic Debye–Grüneisen approach was confirmed to be valid in describing the temperature-dependent thermodynamic properties of the Co3X and Co7X6 compounds, including heat capacity, vibrational entropy, and Gibbs free energy. Based on the calculated Gibbs free energy of DO19-Co3X and L12-Co7X6, the phase transformation temperatures for DO19-Co3X to L12-Co7X6 were determined and obtained values were noted to match well with the experiment results.


RSC Advances ◽  
2018 ◽  
Vol 8 (2) ◽  
pp. 640-646 ◽  
Author(s):  
Mei Tang ◽  
JiaXiang Shang ◽  
Yue Zhang

The electronic structure and optical properties of oxygen vacancy and La-doped Cd2SnO4 were calculated using the plane-wave-based pseudopotential method based on the density functional theory (DFT) within the generalized gradient approximation (GGA).


2016 ◽  
Vol 43 ◽  
pp. 23-28 ◽  
Author(s):  
Chun Ping Li ◽  
Ge Gao ◽  
Xin Chen

First-principle ultrasoft pseudo potential approach of the plane wave based on density functional theory (DFT) has been used for studying the electronic characterization and optical properties of ZnO and Fe, Co doped ZnO. The results show that the doping impurities change the lattice parameters a little, but bring more changes in the electronic structures. The band gaps are broadened by doping, and the Fermi level accesses to the conduction band which will lead the system to show the character of metallic properties. The dielectric function and absorption peaks are identified and the changes compared to pure ZnO are analyzed in detail.


Sign in / Sign up

Export Citation Format

Share Document