A Collision Detection Algorithm Based on Spatial Partitioning and Bounding Volume

2013 ◽  
Vol 433-435 ◽  
pp. 932-935
Author(s):  
Wei Zhao ◽  
Li Ming Ye

In order to improve the real-time and accuracy in the collision detection technology, a collision detection algorithm based on spatial partitioning and bounding volume was proposed . This algorithm adopted different spatial division strategies for different locations of the spaces according to the details in the scenes to exclude objects which can not intersect.Thus defined the potential intersection areas. Then we used a dynamic S-AABB hierarchy bounding boxes to test whether the intersection happened between the objects in the same grids. We used the sphere boxes to rule out the disjoint objects quickly. Then constructed the dynamic AABB bounding boxes trees for the rest of objects for further intersection test. At last, we improved the traditional overlapping test between the primitives for accurate collision detection . Compared to the traditional collision detection algorithm based on spatial partitioning and AABB bounding volume. This algorithm effectively improves the real-time of the collision detection without affecting the accuracy of original collision detection.

2014 ◽  
Vol 687-691 ◽  
pp. 3893-3896
Author(s):  
Ming Quan Wang ◽  
Wei Zhao ◽  
Hui Yan Qu

In order to improve the speed of collision detection between objects in the large-scale and complex scene, this paper proposed an improved collision detection algorithm based on GPU, In this method, we first divided the virtual space into several grids to rule out the impossible intersecting objects rapidly using the GPU acceleration technology; secondly, we adopted parallel technology to build K - DOP bounding boxes for the objects in the same grids and then detected whether the K - DOP bounding boxes intervene or collide to conform the potential colliding primitive pairs; Finally we traveled the final triangle intersection tests on GPU. Compared to the traditional K-DOP compared bounding box collision detection, The algorithm can effectively improve the real-time collision detection.


2013 ◽  
Vol 846-847 ◽  
pp. 1372-1375
Author(s):  
Wei Zhao ◽  
Li Ming Ye

An optimized collision detection algorithm based on dynamic bounding volume tree is proposed in this paper. First this algorithm adopts spatial division to exclude objects which cant intersect to define the potential intersection areas. Then use a new dynamic OBB bounding volume tree to test whether the intersection happened between the objects in the same grid. At last, this algorithm improves the traditional overlapping test between the primitives for accurate collision detection to accelerate the detection between objects. Compared to the traditional collision detection algorithm based on OBB bounding volume. This algorithm can effectively improve the real-time of the collision detection without affecting the accuracy of original collision detection.


2012 ◽  
Vol 472-475 ◽  
pp. 2608-2611 ◽  
Author(s):  
Yan Bin Zheng ◽  
Ling Yun Guo ◽  
Jing Jing Liu

The collision detection in virtual scene can effectively improve the fidelity of virtual reality, however, the existing collision detection algorithm are not fully ideal. In this paper, a collision detection optimization algorithm based on hybrid bounding volumes is presented to improve the real-time ability of bounding volumes collision detection. The algorithm combines the simplicity of AABB-AABB overlap test with the tightness of k-dops. Bounding volumes binary trees of the objects are designed as double-layered structure, which employ AABBs at the top layer, and k-dops at other layers. The intersection test uses different methods to detect the contact status among objects. Quest tree method is used to speed up the algorithm. Experiment results show that the algorithm above is efficient in improving the real-time and accuracy of collision detecting.


2014 ◽  
Vol 596 ◽  
pp. 370-373
Author(s):  
Li Xu ◽  
Mao Zhen Liu

: The real-time rendering of 3D scene need excellent algorithm to support scene management. After considering the algorithm complexity and scene scale factors, combining the advantages of Bounding Volume Hierarchy (BVH) and rendering tree in scene management, this paper puts forward a kind of scene organize algorithm, to solve the problem of render states redundant calculation when using BVH technology to solve the problem of deformable collision detection, by choosing the appropriate strategy of Hierarchy Bounding Volume tree construction and optimizing rendering tree of the scene. Experiments prove the proposed algorithm can effectively improve the rendering efficiency of 3D scene, enhance the visual effect.


Sensors ◽  
2020 ◽  
Vol 20 (17) ◽  
pp. 4857
Author(s):  
Bin Wang ◽  
Ruiqi Zhang ◽  
Chong Xi ◽  
Jing Sun ◽  
Xiaochun Yang

Real-time and accurate interaction technology is required to realize new wearable Mixed Reality (MR) solutions. At present, the mainstream interaction method relies on gesture detection technology, which has two shortcomings: 1. the hand feature points may easily be obstructed by obstacles and cannot be detected and 2. the kinds of gesture that can be recognized are limited. Hence, it cannot support complex interactions well. Moreover, the traditional collision detection algorithm has difficulty detecting the collision between real and virtual objects under motion. Because location information of real objects needs updating in real time, it is easy to lose collision detection under high speeds. In the implementation of our system, Mixed Reality Table Tennis System, we propose novel methods which overcome these shortcomings. Instead of using gesture detection technology, we use a locator as the main input device and build a data exchange channel for the devices, so that the system can update the motion state of the racket in real time. Besides, we adjust the thickness of the collider dynamically to solve the collision detection problem and calculate rebound results responding to the motion state of the racket and the ball. Experimental results show that our method avoids losing collision detection and improves the authenticity of simulation. It keeps good interaction in real time.


2013 ◽  
Vol 433-435 ◽  
pp. 936-939 ◽  
Author(s):  
Xue Jing Ding

To enhance the real-time and accuracy of collision detection in virtual environment, introduces oriented bounding box (OBB) technology of hierarchical bounding box collision detection algorithm:construction of bounding box, generation of bounding box tree, implementation of collision detection algorithm,overlap judgement of bounding box. Collision detection algorithm based on OBB in this article is applied to solve the problem of collision detection between rigid bodies.


Author(s):  
Benjamin Rodrigue

This chapter will describe several methods of detecting collision events within a 3D environment. It will also discuss some of the bounding volumes, and their intersection tests that can be used to contain the graphical representation of objects in a video game. The first part of the chapter will cover the use of Axially Aligned Bounding Boxes (AABBs) and Radial Collision Volumes. The use of hierarchies with bounding volumes will be discussed. The next section of the chapter will focus on Object Oriented Bounding Boxes (OOBs). The third section is concerned with the Gilbert-Johnson-Keerthi distance algorithm (GJK). The last three sections will focus on ways of optimizing the collision detection process by culling unnecessary intersection tests through the use of type lists, sorted lists and spatial partitioning.


2013 ◽  
Vol 380-384 ◽  
pp. 919-922
Author(s):  
Chen Xia Guo ◽  
Rui Feng Yang

The paper discusess mainly how to accurately measure the real-time length of fiber optic gyroscope sensing coil (fiber coil) in the process of FOG coil winding. First, using the improved moving target detection algorithm to process the fiber images collected by machine vision. Secondly, using software algorithm to calculate the real-time radius of fiber winding. Finaly, combining the incremental optical encoder with real-time radius to calculate real-time winding length of fiber coil.


Sensors ◽  
2018 ◽  
Vol 18 (10) ◽  
pp. 3367 ◽  
Author(s):  
Nan Ding ◽  
Huanbo Gao ◽  
Hongyu Bu ◽  
Haoxuan Ma ◽  
Huaiwei Si

Anomaly detection is an important research direction, which takes the real-time information system from different sensors and conditional information sources into consideration. Based on this, we can detect possible anomalies expected of the devices and components. One of the challenges is anomaly detection in multivariate-sensing time-series in this paper. Based on this situation, we propose RADM, a real-time anomaly detection algorithm based on Hierarchical Temporal Memory (HTM) and Bayesian Network (BN). First of all, we use HTM model to evaluate the real-time anomalies of each univariate-sensing time-series. Secondly, a model of anomalous state detection in multivariate-sensing time-series based on Naive Bayesian is designed to analyze the validity of the above time-series. Lastly, considering the real-time monitoring cases of the system states of terminal nodes in Cloud Platform, the effectiveness of the methodology is demonstrated using a simulated example. Extensive simulation results show that using RADM in multivariate-sensing time-series is able to detect more abnormal, and thus can remarkably improve the performance of real-time anomaly detection.


Sign in / Sign up

Export Citation Format

Share Document