3D Parametric Unfolding Method for Sheet-Metal Part

2014 ◽  
Vol 488-489 ◽  
pp. 79-82
Author(s):  
Bo Sun ◽  
Long Chen

The unfolding is the first step for the manufacturing of the sheet-metal part, which plays a major role for the accuracy and quality of the final product. Unfortunately, the inefficiency of the traditional drawing-based method made the process boring and sometime confusing. The CAD method made benefit for the designer. By means of the 3D modeling kernel and the mathematic model of unfolding process, the automatic design system of sheet-metal part was developed, in which the models are parametric and in 3D environment.

2014 ◽  
Vol 989-994 ◽  
pp. 3310-3313
Author(s):  
Yang Li ◽  
Jie Gang Zhang ◽  
Ji Guang Li ◽  
Yu Chen Li

There are a variety of sheet metal parts in rocket body structure. The exact length calculation of sheet metal structure work is the key to ensure better quality of product. This paper describes two methods of sheet metal part unfolding which are method of formula and method of software. Two quick unfolding ways using AUTOCAD and EXCEL are described aim at method of formula. Summarize the notes of using Pro/E to unfold aim at method of software. span>Parts Unfolding


2011 ◽  
Vol 199-200 ◽  
pp. 1901-1905
Author(s):  
Li Cheng Huang ◽  
Xiao Ting Xiao ◽  
Li Guang Tan ◽  
Guo Liang Li

To satisfy the local forming need of sheet-metal part, numerical simulation of SUS304 stainless steel deep-drawing with trilateral constrained slot were carried out by employing the analytical software ETA/dynaform5.5. The influence of different friction coefficient and holder force on the forming quality was analyzed by taking the inflow volume while parts forming 50mm as standard. The results show that the effect of trilateral constraint on the uneven flow and deformation of flange. And some measures were illustrated to improve the quality of some of these parts.


2013 ◽  
Vol 423-426 ◽  
pp. 737-740
Author(s):  
Zhong Yi Cai ◽  
Mi Wang ◽  
Chao Jie Che

A new stretch-forming process based on discretely loading for three-dimensional sheet metal part is proposed and numerically investigated. The gripping jaw in traditional stretch-forming process is replaced by the discrete array of loading units, and the stretching load is applied at discrete points on the two ends of sheet metal. By controlling the loading trajectory at the each discrete point, an optimal stretch-forming process can be realized. The numerical results on the new stretch-forming process of a saddle-shaped sheet metal part show that the distribution of the deformation on the formed surface of new process is more uniform than that of traditional stretch-forming, and the forming defects can be avoided and better forming quality will be obtained.


2020 ◽  
Vol 5 (3) ◽  
pp. 143-150
Author(s):  
Netsanet Ferede

In an optimization problem, different candidate solutions are compared with each other, and then the best or optimal solution is obtained which means that solution quality is fundamental. Topology optimization is used at the concept stage of design. It deals with the optimal distribution of material within the structure. Altair Inspire software is the industry's most powerful and easy-to-use Generative Design/Topology Optimization and rapid simulation solution for design engineers. In this paper Topology optimization is applied using Altair inspire to optimize the Sheet metal Angle bracket. Different results are conducted the better and final results are fulfilling the goal of the paper which is minimizing the mass of the sheet metal part by 65.9%  part and Maximizing the stiffness with Better Results of Von- Miss Stress Analysis,  Displacement, and comparison with different load cases.  This can lead to reduced costs, development time, material consumption, and product less weight.


IEEE Access ◽  
2020 ◽  
Vol 8 ◽  
pp. 127329-127342
Author(s):  
Ruey-Kai Sheu ◽  
Yuan-Cheng Lin ◽  
Chin-Yin Huang ◽  
Lun-Chi Chen ◽  
Mayuresh Sunil Pardeshi ◽  
...  

2012 ◽  
Vol 212 (11) ◽  
pp. 2247-2254 ◽  
Author(s):  
Jun-Song Jin ◽  
Lei Deng ◽  
Xin-Yun Wang ◽  
Ju-Chen Xia

Author(s):  
Cao Yan ◽  
Du Jiang ◽  
Yang Lina ◽  
Yang Yanli ◽  
Bai Yu ◽  
...  

1974 ◽  
Vol 17 (112) ◽  
pp. 1240-1246 ◽  
Author(s):  
Hideo ISEKI ◽  
Takashi JIMMA ◽  
Tadao MUROTA

2014 ◽  
Vol 599-601 ◽  
pp. 413-416 ◽  
Author(s):  
Hu Zhu ◽  
Jin Ju ◽  
Yi Bo Liu

For the purpose of the fabrication of the sheet-metal parts with non-horizontal end face using the sheet metal CNC incremental forming technology, two kinds of path generating methods, namely the level path perpendicular to Z axis method and the equidistant path parallel to sheet metal are proposed in this paper. Both of the paths are generated by Visual C++ and OpenGL graphics library, the effect of the two kinds of forming paths to the forming quality of the sheet part with non-horizontal end face is researched using the finite element analysis method in this paper.


Sign in / Sign up

Export Citation Format

Share Document