The Multiple Exact Solutions for the Variable Coefficient KdV Equation

2014 ◽  
Vol 513-517 ◽  
pp. 4474-4477
Author(s):  
Lin Tian ◽  
Jia Qing Miao

The auxiliary differential equation method has recently been proposed ,It is introduced to construct more new exact solutions for the variable coefficient KdV equations. As a result , hyperbolic function solutions, trigonometric function solutions, and elliptic function solutions rational function solutions with parameters are obtained.

2013 ◽  
Vol 2013 ◽  
pp. 1-6 ◽  
Author(s):  
Fanwei Meng

We propose a new variable-coefficient Riccati subequation method to establish new exact solutions for nonlinear differential-difference equations. For illustrating the validity of this method, we apply it to the discrete (2 + 1)-dimensional Toda lattice equation. As a result, some new and generalized traveling wave solutions including hyperbolic function solutions, trigonometric function solutions, and rational function solutions are obtained.


2019 ◽  
Vol 35 (01) ◽  
pp. 1950339
Author(s):  
Zhenli Wang ◽  
Chuan Zhong Li ◽  
Lihua Zhang

In this paper, by applying the direct symmetry method, we obtain the symmetry reductions, group invariant solutions and some new exact solutions of the Bogoyavlenskii equation, which include hyperbolic function solutions, trigonometric function solutions and power series solutions. We also give the conservation laws of the Bogoyavlenskii equation.


2010 ◽  
Vol 20-23 ◽  
pp. 184-189 ◽  
Author(s):  
Bang Qing Li ◽  
Yu Lan Ma

By introducing (G′/G)-expansion method and symbolic computation software MAPLE, two types of new exact solutions are constructed for coupled mKdV equations. The solutions included trigonometric function solutions and hyperbolic function solutions. The procedure is concise and straightforward, and the method is also helpful to find exact solutions for other nonlinear evolution equations.


2014 ◽  
Vol 513-517 ◽  
pp. 4470-4473 ◽  
Author(s):  
Lin Tian ◽  
Yu Ping Qin

This paper describes a method on which modify auxiliary differential equation method by using this method for solving nonlinear partial differential equations and with aid of Maple Software ,we get the exact solution of the generalized schrödinger, including hyperbolic function solutions, trigonometric solution.


2019 ◽  
Vol 23 (4) ◽  
pp. 2403-2411 ◽  
Author(s):  
Bo Xu ◽  
Sheng Zhang

In this paper, the (4+1)-dimensional Fokas equation is solved by the generalized F-expansion method, and new exact solutions with arbitrary functions are obtained. The obtained solutions include Jacobi elliptic function solutions, hyperbolic function solutions and trigonometric function solutions. It is shown that the generalized F-expansion method can be used for constructing exact solutions with arbitrary functions of some other high dimensional partial differential equations in fluids.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Zhao Li ◽  
Tianyong Han

AbstractIn this paper, the bifurcation and new exact solutions for the ($2+1$ 2 + 1 )-dimensional conformable time-fractional Zoomeron equation are investigated by utilizing two reliable methods, which are generalized $(G'/G)$ ( G ′ / G ) -expansion method and the integral bifurcation method. The exact solutions of the ($2+1$ 2 + 1 )-dimensional conformable time-fractional Zoomeron equation are obtained by utilizing the generalized $(G'/G)$ ( G ′ / G ) -expansion method, these solutions are classified as hyperbolic function solutions, trigonometric function solutions, and rational function solutions. Giving different parameter conditions, many integral bifurcations, phase portraits, and traveling wave solutions for the equation are obtained via the integral bifurcation method. Graphical representations of different kinds of the exact solutions reveal that the two methods are of significance for constructing the exact solutions of fractional partial differential equation.


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Yusuf Pandir ◽  
Halime Ulusoy

We firstly give some new functions called generalized hyperbolic functions. By the using of the generalized hyperbolic functions, new kinds of transformations are defined to discover the exact approximate solutions of nonlinear partial differential equations. Based on the generalized hyperbolic function transformation of the generalized KdV equation and the coupled equal width wave equations (CEWE), we find new exact solutions of two equations and analyze the properties of them by taking different parameter values of the generalized hyperbolic functions. We think that these solutions are very important to explain some physical phenomena.


Author(s):  
Supratim Das ◽  
Dibyendu Ghosh

We apply the AKNS hierarchy to derive the generalized KdV equation andthe generalized modified KdV equation with variable-coefficients. We system-atically derive new exact solutions for them. The solutions turn out to beexpressible in terms of doubly-periodic Jacobian elliptic functions.


2019 ◽  
Vol 2019 ◽  
pp. 1-8 ◽  
Author(s):  
Guiying Chen ◽  
Xiangpeng Xin ◽  
Hanze Liu

Theexp(-Φ(ξ))-expansion method is improved by presenting a new auxiliary ordinary differential equation forΦ(ξ). By using this method, new exact traveling wave solutions of two important nonlinear evolution equations, i.e., the ill-posed Boussinesq equation and the unstable nonlinear Schrödinger equation, are constructed. The obtained solutions contain Jacobi elliptic function solutions which can be degenerated to the hyperbolic function solutions and the trigonometric function solutions. The present method is very concise and effective and can be applied to other types of nonlinear evolution equations.


Sign in / Sign up

Export Citation Format

Share Document