BP Neural Network Based Animation Production Prediction

2014 ◽  
Vol 539 ◽  
pp. 475-478
Author(s):  
Ran Tao ◽  
Da Chao Yuan ◽  
Gang Yi Hu

In order to research the basic condition of animation production, this article chooses BP Neural Network to predict the animation production. We select 13 test samples, selected nine of them randomly as training samples, and the remaining four as the test samples. The coefficient of determination is 0.99839 and the mean relative error is 0.186125. The result shows that BP Neural Network is an effective prediction method.

Atmosphere ◽  
2019 ◽  
Vol 10 (6) ◽  
pp. 314 ◽  
Author(s):  
Yulong Shan ◽  
Ren Zhang ◽  
Ming Li ◽  
Yangjun Wang ◽  
Qiuhan Li ◽  
...  

With the accelerated warming of the arctic and the gradual opening of the Arctic passages, more and more attention has been paid to assessing the risk of the navigation environment in the Arctic. Due to the scarcity of visibility data in the Arctic, this study proposes a model for referring visibility based on a back propagation (BP) neural network. The reliability of the model is validated and the gridded atmospheric visibility data in the Arctic from 2009 to 2018 was obtained. At the same time, this study analyzed the spatial and temporal features of visibility in the Arctic. The results show that the mean relative error is less than 20% under the different sample forms and it is more accurate to infer the visibility in a specific month using the multiple-year data of that month as training samples. Furthermore, the amount of sample data has a positive effect on the accuracy of inferred visibility, but the effect decreases with data quantity increasing. Visibility changes quickly in the south of 80° N in August, but slowly in the north in that time. At the same time, visibility in July and August is lower than that in other months but higher in March and May.


2014 ◽  
Vol 1030-1032 ◽  
pp. 1185-1188
Author(s):  
Yan Feng

Introduced the composition and the principle of operation of the oil system of aviation piston engine. Analysed common faults of the oil system including high oil pressure indication,low oil pressure indication, high oil temperature indication and excessive oil consumption.Failure causes for above faults were analysed separately.Symbols were stood for failure modes and failure causes. Constructed the BP neural network.Symbols of failure modes were inputs of the BP neural network,and symbols of failure causes were outputs of the BP neural network.Builded a mapping relationship between failure modes and failure causes by training samples studying.Four training samples were selected based on common faults and fault effects.A given mode was as a input of the network,and by adjusting connection weights and the threshold of every neuron,an ideal result could be gotten.Then other mode was as a input of the network which carried on studying until the epochs was 369,and the mean squared error fast converged and the value of mean squared error was.The failure causes for the given failure mode can be confirmed by this BP neural network.By engineering verification, the BP neural network is applicable to fault diagnosis for oil system of aviation piston engine.


Energies ◽  
2019 ◽  
Vol 12 (14) ◽  
pp. 2709 ◽  
Author(s):  
Han ◽  
Nan ◽  
Su ◽  
Chen ◽  
Li ◽  
...  

With the aim of improving the shortcomings of the traditional single hidden layer back propagation (BP) neural network structure and learning algorithm, this paper proposes a centrifugal pump performance prediction method based on the combination of the Levenberg–Marquardt (LM) training algorithm and double hidden layer BP neural network. MATLAB was used to establish a double hidden layer BP neural network prediction model to predict the head and efficiency of a centrifugal pump. The average relative error of the head between the experimental and prediction obtained by the double hidden layer BP neural network model was 4.35%, the average relative error of the model prediction efficiency and the experimental efficiency was 2.94%, and the convergence time was 1/42 of that of the single hidden layer. The double hidden layer BP neural network model effectively solves the problems of low learning efficiency and easy convergence into local minima—issues that were common in the traditional single hidden layer BP neural network training. Furthermore, the proposed model realizes hydraulic performance prediction during the design process of a centrifugal pump.


Energies ◽  
2020 ◽  
Vol 13 (5) ◽  
pp. 1094 ◽  
Author(s):  
Lanjun Wan ◽  
Hongyang Li ◽  
Yiwei Chen ◽  
Changyun Li

To effectively predict the rolling bearing fault under different working conditions, a rolling bearing fault prediction method based on quantum particle swarm optimization (QPSO) backpropagation (BP) neural network and Dempster–Shafer evidence theory is proposed. First, the original vibration signals of rolling bearing are decomposed by three-layer wavelet packet, and the eigenvectors of different states of rolling bearing are constructed as input data of BP neural network. Second, the optimal number of hidden-layer nodes of BP neural network is automatically found by the dichotomy method to improve the efficiency of selecting the number of hidden-layer nodes. Third, the initial weights and thresholds of BP neural network are optimized by QPSO algorithm, which can improve the convergence speed and classification accuracy of BP neural network. Finally, the fault classification results of multiple QPSO-BP neural networks are fused by Dempster–Shafer evidence theory, and the final rolling bearing fault prediction model is obtained. The experiments demonstrate that different types of rolling bearing fault can be effectively and efficiently predicted under various working conditions.


2015 ◽  
Vol 737 ◽  
pp. 9-13
Author(s):  
Jun Zhang ◽  
Yuan Hao Wang ◽  
Ying Yi Li ◽  
Feng Guo

With the wind farm data from the southeast coast this paper builds a two-stage combination forecasting model of output power based on data preprocessing which include filling up missing data and pre-decomposition. The first stage is a composite prediction of decomposed power sequence in which a time series and optimized BP neural network predict the general trend and the correlation of various factors respectively. The second stage is BP neural network with its input is the results of first stage. The effectiveness and accuracy of the two-stage combination model are verified by comparing the mean square error of the combination model and other models.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Shaobo Lu

Based on the BP neural network and the ARIMA model, this paper predicts the nonlinear residual of GDP and adds the predicted values of the two models to obtain the final predicted value of the model. First, the focus is on the ARMA model in the univariate time series. However, in real life, forecasts are often affected by many factors, so the following introduces the ARIMAX model in the multivariate time series. In the prediction process, the network structure and various parameters of the neural network are not given in a systematic way, so the operation of the neural network is affected by many factors. Each forecasting method has its scope of application and also has its own weaknesses caused by the characteristics of its own model. Secondly, this paper proposes an effective combination method according to the GDP characteristics and builds an improved algorithm BP neural network price prediction model, the research on the combination of GDP prediction model is currently mostly focused on the weighted form, and this article proposes another combination, namely, error correction. According to the price characteristics, we determine the appropriate number of hidden layer nodes and build a BP neural network price prediction model based on the improved algorithm. Validation of examples shows that the error-corrected GDP forecast model is also better than the weighted GDP forecast model, which shows that error correction is also a better combination of forecasting methods. The forecast results of BP neural network have lower errors and monthly prices. The relative error of prediction is about 2.5%. Through comparison with the prediction results of the ARIMA model, in the daily price prediction, the relative error of the BP neural network prediction is 1.5%, which is lower than the relative error of the ARIMA model of 2%.


2014 ◽  
Vol 933 ◽  
pp. 384-389
Author(s):  
Xin Zhao ◽  
Shuang Xin Wang

Wind power short-term forcasting of BP neural network based on the small-world optimization is proposed. First, the initial data collected from wind farm are revised, and the unreasonable data are found out and revised. Second, the small-world optimization BP neural network model is proposed, and the model is used on the prediction method of wind speed and wind direction, and the prediction method of power. Finally, by simulation analysis, the NMAE and NRMSE of the power method are smaller than those of the wind speed and wind direction method when the wind power data of one hour later are predicted. When the power method are used to forecast the data one hour later, NMAE is 5.39% and NRMSE is 6.98%.


Author(s):  
Tang Yushou Su Jianhuan

College Students’ mental health is an important part of higher education, so the current research and prediction of College Students’ mental health are of great significance to better solve the problem of College Students’ mental health. Taking a local university as an example, the data from 2011 to 2019 are selected and analyzed. The normalized data processing method is used to assign weights to 11 kinds of factors that affect the health of college students. The training samples of a neural network are selected, and the structural characteristics of the neural network and the artificial neural network toolbox of MATLAB are used to establish the BP based model the mathematical model of the prediction system of College Students’ mental health based on neural network. The results show that the error between the predicted value and the measured value is only 0.88%. On this basis, this paper uses the model to predict the weight of the influencing factors of the mental health status of college students in a local university in 2020 and analyzes the causes of the prediction results, to provide the basis for the current mental health education of college students.


Sign in / Sign up

Export Citation Format

Share Document