An Experimental Investigation on Transpiration Cooling for Supersonic Vehicle Nose Cone Using Porous Material

2014 ◽  
Vol 541-542 ◽  
pp. 690-694 ◽  
Author(s):  
Lian Jin Zhao ◽  
Jia Lin ◽  
Jian Hua Wang ◽  
Jin Long Peng ◽  
De Jun Qu ◽  
...  

During hypersonic flight or cruise in the near space, the aerodynamic heating causes a very high temperature on the leading edge of hypersonic vehicles. Transpiration cooling has been recognized the most effective cooling technology. This paper presents an experimental investigation on transpiration cooling using liquid water as coolant for a nose cone model of hypersonic vehicles. The nose cone model consists of sintered porous material. The experiments were carried out in the Supersonic Jet Arc-heated Facility (SJAF) of China Academy of Aerospace Aerodynamics (CAAA) in Beijing. The cooling effect in the different regions of the model was analyzed, and the shock wave was exhibited. The pressure variations of the coolant injection system were continuously recorded. The aim of this work is to provide a relatively useful reference for the designers of coolant driving system in practical hypersonic vehicles.

2014 ◽  
Vol 84 ◽  
pp. 207-213 ◽  
Author(s):  
Lianjin Zhao ◽  
Jianhua Wang ◽  
Jie Ma ◽  
Jia Lin ◽  
Jinlong Peng ◽  
...  

2021 ◽  
Vol 2097 (1) ◽  
pp. 012021
Author(s):  
Meng Wang ◽  
Jianhua Wang ◽  
Fei He ◽  
Kang Qian ◽  
Yadong Wu ◽  
...  

Abstract In the severe high-temperature environment caused by aerodynamic heating, the vibrational excitation, dissociation and ionization of gas may successively occur, which are known as real gas effects. Under the real gas effects, the thermodynamic properties of gas vary drastically and significantly influence the performances of the active thermal protection system of hypersonic vehicles, especially in the case with coolant outflow, for example transpiration cooling. This paper numerically investigates the transpiration cooling performance with the consideration of the interaction between coolant outflow and hypersonic flow under the real gas effects. The mathematical models and coupled numerical strategy are firstly validated by experimental data, then the influences of real gas effects on the transpiration cooling of a wedged leading edge (WLE) are studied under a flight Mach number range from 8 to 12 and a flight height of 40 km. The analysis and discussions of the numerical results reveal some important phenomena and demonstrate the need to consider real gas effects.


Author(s):  
Saiprakash Mani ◽  
C. Senthilkumar ◽  
G. Kadam Sunil ◽  
Singh Prakash Rampratap ◽  
V. Shanmugam ◽  
...  

Author(s):  
GholamHossein Maleki ◽  
Ali Reza Davari ◽  
Mohammad Reza Soltani

An extensive experimental investigation was conducted to study the effects of Dielectric Barrier Discharge (DBD), on the flow field of an airfoil at low Reynolds number. The DBD was mounted near the leading edge of a section of a wind turbine blade. It is believed that DBD can postpone the separation point on the airfoil by injecting momentum to the flow. The effects of steady actuations on the velocity profiles in the wake region have been investigated. The tests were performed at α = 4 to 36 degrees i.e. from low to deep stall angles of attack regions. Both surface pressure distribution and wake profile show remarkable improvement at high angles of attack, beyond the static stall angle of the airfoil when the plasma actuation was implemented. The drag calculated from the wake momentum deficit has further shown the favorable role of the plasma actuators to control the flow over the airfoil at incidences beyond the static stall angle of attack of this airfoil. The results demonstrated that DBD has been able to postpone the stall onset significantly. It has been observed that the best performance for the plasma actuation for this airfoil is in the deep stall angles of attack range. However, below and near the static stall angles of attack, plasma augmentation was pointed out to have a negligible improvement in the aerodynamic behavior.


2019 ◽  
Vol 158 ◽  
pp. 113753 ◽  
Author(s):  
Kang Qian ◽  
Jianhua Wang ◽  
Fei He ◽  
Yadong Wu ◽  
Zihe Zhou

1984 ◽  
Vol 28 (02) ◽  
pp. 90-106
Author(s):  
Jacques Verron ◽  
Jean-Marie Michel

Experimental results are given concerning the behavior of the flow around three-dimensional base-vented hydrofoils with wetted upper side. The influence of planform is given particular consideration so that the sections of the foils are simple wedges with rounded noses. Results concern cavity configuration, the relation between the air flow rate and cavity pressure, leading-edge cavitation, cavity length, pulsation frequency, and force coefficients.


Sign in / Sign up

Export Citation Format

Share Document