Heavy Oil Distribution and its Influence on Remaining Oil Distribution of G6 Block in Jinhu Depression

2014 ◽  
Vol 556-562 ◽  
pp. 937-939
Author(s):  
Xue Li ◽  
Jing Rui Xu ◽  
Jin Liang Zhang

Heavy oil, with the characteristics of high viscosity and large density, is the most important component of petroleum hydrocarbon energy. In reservoir exploration, its dynamic resistance not only reduces driven efficiency, but also brings much more exploration difficulty, so it is not feasible to exploit heavy oil with conventional methods. Previous studies have carried heavy oil research , but few have attempted to examine the impact of heavy oil on reservoir properties .In this paper, a detailed analysis of heavy oil distribution and remaining oil distribution of G6 block is performed. The conclusion are drawn: the local water flooding and local remaining oil selectively accumulation are caused by heavy oil through reducing water flooding efficiency; As to heavy oil recovery, appropriate exploration should be selected to reduce viscosity of heavy oil according to different geological conditions.

Energies ◽  
2019 ◽  
Vol 12 (19) ◽  
pp. 3789 ◽  
Author(s):  
He ◽  
Chen ◽  
Yu ◽  
Wen ◽  
Liu

Surfactant–polymer (SP) flooding has significant potential to enhance oil recovery after water flooding in mature reservoirs. However, the economic benefit of the SP flooding process is unsatisfactory under low oil prices. Thus, it is necessary to reduce the chemical costs and improve SP flooding efficiency to make SP flooding more profitable. Our goal was to maximize the incremental oil recovery of the SP flooding process after water flooding by using the equal chemical consumption cost to ensure the economic viability of the SP flooding process. Thus, a systematic study was carried out to investigate the SP flooding process under different injection strategies by conducting parallel sand pack flooding experiments to optimize the SP flooding design. Then, the comparison of the remaining oil distribution after water flooding and SP flooding under different injection strategies was studied. The results demonstrate that the EOR efficiency of the SP flooding process under the alternating injection of polymer and surfactant–polymer (PASP) is higher than that of conventional simultaneous injection of surfactant and polymer. Moreover, as the alternating cycle increases, the incremental oil recovery increases. Based on the analysis of fractional flow, incremental oil recovery, and remaining oil distribution when compared with the conventional simultaneous injection of surfactant and polymer, the alternating injection of polymer and surfactant–polymer (PASP) showed better sweep efficiency improvement and recovered more remaining oil trapped in the low permeability zone. Thus, these findings could provide insights into designing the SP flooding process under low oil prices.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Jie Zhang ◽  
Feifei Fang ◽  
Jie Wang ◽  
Yajie Tian ◽  
Fei Mo ◽  
...  

At high water cut stage, the study of remaining oil distribution in water-flooding reservoir is the basis of implementing potential-tapping measures and enhancing oil recovery. At present, most of the oilfields in China have entered the stage of ultrahigh water cut. The reserves of the oilfields are highly developed, the situation of water flooding is extremely complex, and it is difficult to predict the distribution of the remaining oil, which seriously restricts the adjustment of the production measures, tapping the potential and improving the ultimate recovery rate. In view of aforementioned difficulties, this study puts forward a research approach to predict remaining oil distribution based on reservoir heterogeneity, which can quantitatively characterize reservoir heterogeneity. In order to avoid the drawback that a single parameter cannot fully describe the characteristics of pore structure, the composite index of pore structure (SQRT(K/Φ)) is introduced to study the pore microstructure. The composite index of pore structure is used to predict the distribution of remaining oil in the formation, and the results are basically consistent with those calculated by numerical simulation. It is concluded that the larger the fractal dimension of the composite index of pore structure is, the stronger the heterogeneity of reservoir is; the smaller the composite index of pore structure is, the smaller the recovery degree is. The composite index of pore structure is used to analyze and predict the distribution of remaining oil in the layer, which provides a new direction for the prediction method of remaining oil.


2014 ◽  
Vol 915-916 ◽  
pp. 1128-1131
Author(s):  
Yu Sheng Ding ◽  
Shuang Yan Chen ◽  
Jun Xie ◽  
Ju Biao Zhou ◽  
Li Yao Li

Inefficient reserves in fault block belongs to low permeability thin interbed, thus water flooding development process has exposed many contradictions which are serious heterogeneity, large difference of suction of interlayer. Entering the water injection development, the injected water which rapidly advance along the high permeability channel causes water channeling and water flooding, which intenses development contradictions between layers. The reservoir numerical simulation technology on computer can reappear the movement of water and gas in the underground reservoir development process and describes the underground remaining oil distribution of inefficient reserves in complex fault block, which summarizes the remaining oil distribution rule of the water flooding development for complex fault block of inefficient reserves and provides basis for the establishment of oil field development adjustment scheme.


2012 ◽  
Vol 594-597 ◽  
pp. 2541-2544
Author(s):  
Xiao Hui Wu ◽  
Kao Ping Song ◽  
Chi Dong ◽  
Ji Cheng Zhang ◽  
Jing Fu Deng

As line well pattern is the main development technique in the thin and poor oil layers of Daqing Oilfield South West Ⅱ PⅠ group, the layers have been idle and the degree of reserve recovery is far less than the region level. In response to these problems, we analyzed the balanced flood performance of various layers and the remaining oil distribution through numerical simulation technique. It shows that, the main remaining oil type of intended layers is caused by voidage-injection imperfection. Considering the needs of the follow-up infill well pattern and tertiary oil recovery, we decided to keep the well network independent and integrated without disturbing the pattern configuration and main mining object of various sets of well pattern. Finally we confirmed to perforate-adding the first infill wells of intended layers to consummate the water flooding regime. Through analyzing the production target of different well pattern optimization programs relatively, it shows that the best program has regular well pattern and large drilled thickness.


2019 ◽  
Vol 141 (9) ◽  
Author(s):  
Yongfei Yang ◽  
Haiyuan Yang ◽  
Liu Tao ◽  
Jun Yao ◽  
Wendong Wang ◽  
...  

To investigate the characteristics of oil distribution in porous media systems during a high water cut stage, sandstones with different permeability scales of 53.63 × 10−3 μm2 and 108.11 × 10−3 μm2 were imaged under a resolution of 4.12 μm during a water flooding process using X-ray tomography. Based on the cluster-size distribution of oil segmented from the tomography images and through classification using the shape factor and Euler number, the transformation of the oil distribution pattern in different injection stages was studied for samples with different pore structures. In general, the distribution patterns of an oil cluster continuously change during water injection. Large connected oil clusters break off into smaller segments. The sandstone with a higher permeability (108.11 × 10−3 μm2) shows the larger change in distribution pattern, and the remaining oil is trapped in the pores with a radius of approximately 7–12 μm. Meanwhile, some disconnected clusters merge together and lead to a re-connection during the high water cut period. However, the pore structure becomes compact and complex, the residual nonwetting phase becomes static and is difficult to move; and thus, all distribution patterns coexist during the entire displacement process and mainly distribute in pores with a radius of 8–12 μm. For the pore-scale entrapment characteristics of the oil phase during a high water cut period, different enhance oil recovery (EOR) methods should be considered in sandstones correspondent to each permeability scale.


2013 ◽  
Vol 734-737 ◽  
pp. 1257-1261
Author(s):  
Ji Cheng Zhang ◽  
Shu Hong Zhao ◽  
Jin Yu Lan ◽  
Kao Ping Song

This paper analyzed the balanced flood performance of various layers and the remaining oil distribution through numerical simulation technique. It shows that, the main remaining oil type of intended layers is caused by voidage-injection imperfection. Considering the needs of the follow-up infill well pattern and tertiary oil recovery, we decide to maintain the relative independence and integrity of each well network without disturbing the pattern configuration and the mining exploit object of various sets of well pattern. Finally we confirm to perforate adding the first infill wells of intended layers to consummate the water flooding regime. Through analyzing the production target of different well pattern optimization programs relatively, it shows that the best program has regular well pattern and large drilled thickness.


Author(s):  
А.А. Умаев ◽  
А-М.Б. Измаилов ◽  
Т-А.У. Мусаев ◽  
А.Ш. Халадов

Наряду с совершенствованием эксплуатации скважин и повышением продуктивности за счет работ по воздействию на призабойную зону пласта, одним из главных вопросов является повышение нефтеотдачи пласта. Актуальность этих вопросов не вызывает сомнения применительно к месторождениям Северного Кавказа. Особенные геологическиеусловия присущие продуктивным пластам Чеченской республики (большая глубина залегания, высокая температура и давление, неоднородность коллекторских свойств и т.д.) затрудняют или полностью исключают возможность применения известных методов физико-химического воздействия на пласты с целью интенсификации отборов нефти и повышения нефтеотдачи. На нефтегазодобывающих объектах ЧР применялись основные физико-химические, тепловые и гидродинамические методы повышения нефтеотдачи пластов Along with improving the operation of wells and increasing productivity due to the work on the impact on the bottomhole formation zone, one of the main issues is the increase in oil recovery. The relevance of these issues does not raise doubts in relation to the fields of the North Caucasus. The special geological conditions inherent in the productive formations of the Chechen Republic (large depth, high temperature and pressure, heterogeneity of reservoir properties, etc.) make it difficult or completely exclude the possibility of using known methods of physicochemical treatment of formations in order to intensify oil production and increase oil recovery. The main physical, chemical, thermal and hydrodynamic methods of enhanced oil recovery were used at oil and gas production facilities in the Chechen Republic


2013 ◽  
Vol 734-737 ◽  
pp. 1189-1195
Author(s):  
Li Yan Sun ◽  
Hai Dong Shi ◽  
Hao Yang ◽  
Ji Cheng Zhang

Figuring out the rule of remaining oil distribution after polymer flooding is the basis for continuing study on development policy after polymer flooding in Daqing Oil Field. Based on the basic principles of percolation mechanics, percolation mechanics of polymer flooding reservoirs under fixed injection pressure and injection rate was studied, the mechanism of remaining oil changes after polymer flooding was investigated; According to the numerical simulation results, the rule of remaining oil distribution in Daqing oilfield has been given out. This will be theoretical and practical guidance for enhancing oil recovery after polymer flooding.


Sign in / Sign up

Export Citation Format

Share Document