Two-Sided Matching with Ordinal Numbers and Costs

2014 ◽  
Vol 587-589 ◽  
pp. 2299-2302
Author(s):  
Qi Yue

A novel decision method for solving the two-sided matching problem is proposed in this paper, in which the preferences provided by agents are in the format of ordinal numbers and the preference provided by intermediary is in the format of costs. The concept of two-sided matching is firstly introduced, and the two-sided matching problem with ordinal numbers and costs is discribed. Then the related concepts on costs are given. Considering the ordinal number of each agent and the cost of intermediary, a multi-objective optimization model is set up. The method of weighted sums based on membership function is used to convert the multi-objective optimization model into a single-objective model. By solving the model, the matching alternative can be obtained.

Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 811 ◽  
Author(s):  
Yongmao Xiao ◽  
Qingshan Gong ◽  
Xiaowu Chen

The blank’s dimensions are an important focus of blank design as they largely determine the energy consumption and cost of manufacturing and further processing the blank. To achieve energy saving and low cost during the optimization of blank dimensions design, we established energy consumption and cost objectives in the manufacturing and further processing of blanks by optimizing the parameters. As objectives, we selected the blank’s production and further processing parameters as optimization variables to minimize energy consumption and cost, then set up a multi-objective optimization model. The optimal blank dimension was back calculated using the parameters of the minimum processing energy consumption and minimum cost state, and the model was optimized using the non-dominated genetic algorithm-II (NSGA-II). The effect of designing blank dimension in saving energy and costs is obvious compared with the existing methods.


2021 ◽  
Vol 9 ◽  
Author(s):  
Jianjia He ◽  
Gang Liu ◽  
Thi Hoai Thuong Mai ◽  
Ting Ting Li

Significant public health emergencies greatly impact the global supply chain system of production and cause severe shortages in personal protective and medical emergency supplies. Thus, rapid manufacturing, scattered distribution, high design degrees of freedom, and the advantages of the low threshold of 3D printing can play important roles in the production of emergency supplies. In order to better realize the efficient distribution of 3D printing emergency supplies, this paper studies the relationship between supply and demand of 3D printing equipment and emergency supplies produced by 3D printing technology after public health emergencies. First, we fully consider the heterogeneity of user orders, 3D printing equipment resources, and the characteristics of diverse production objectives in the context of the emergent public health environment. The multi-objective optimization model for the production of 3D printing emergency supplies, which was evaluated by multiple manufacturers and in multiple disaster sites, can maximize time and cost benefits of the 3D printing of emergency supplies. Then, an improved non-dominated sorting genetic algorithm (NSGA-II) to solve the multi-objective optimization model is developed and compared with the traditional NSGA-II algorithm analysis. It contains more than one solution in the Pareto optimal solution set. Finally, the effectiveness of 3D printing is verified by numerical simulation, and it is found that it can solve the matching problem of supply and demand of 3D printing emergency supplies in public health emergencies.


2018 ◽  
Author(s):  
Ricardo Guedes ◽  
Vasco Furtado ◽  
Tarcísio Pequeno ◽  
Joel Rodrigues

UNSTRUCTURED The article investigates policies for helping emergency-centre authorities for dispatching resources aimed at reducing goals such as response time, the number of unattended calls, the attending of priority calls, and the cost of displacement of vehicles. Pareto Set is shown to be the appropriated way to support the representation of policies of dispatch since it naturally fits the challenges of multi-objective optimization. By means of the concept of Pareto dominance a set with objectives may be ordered in a way that guides the dispatch of resources. Instead of manually trying to identify the best dispatching strategy, a multi-objective evolutionary algorithm coupled with an Emergency Call Simulator uncovers automatically the best approximation of the optimal Pareto Set that would be the responsible for indicating the importance of each objective and consequently the order of attendance of the calls. The scenario of validation is a big metropolis in Brazil using one-year of real data from 911 calls. Comparisons with traditional policies proposed in the literature are done as well as other innovative policies inspired from different domains as computer science and operational research. The results show that strategy of ranking the calls from a Pareto Set discovered by the evolutionary method is a good option because it has the second best (lowest) waiting time, serves almost 100% of priority calls, is the second most economical, and is the second in attendance of calls. That is to say, it is a strategy in which the four dimensions are considered without major impairment to any of them.


2021 ◽  
Vol 13 (4) ◽  
pp. 1929
Author(s):  
Yongmao Xiao ◽  
Wei Yan ◽  
Ruping Wang ◽  
Zhigang Jiang ◽  
Ying Liu

The optimization of blank design is the key to the implementation of a green innovation strategy. The process of blank design determines more than 80% of resource consumption and environmental emissions during the blank processing. Unfortunately, the traditional blank design method based on function and quality is not suitable for today’s sustainable development concept. In order to solve this problem, a research method of blank design optimization based on a low-carbon and low-cost process route optimization is proposed. Aiming at the processing characteristics of complex box type blank parts, the concept of the workstep element is proposed to represent the characteristics of machining parts, a low-carbon and low-cost multi-objective optimization model is established, and relevant constraints are set up. In addition, an intelligent generation algorithm of a working step chain is proposed, and combined with a particle swarm optimization algorithm to solve the optimization model. Finally, the feasibility and practicability of the method are verified by taking the processing of the blank of an emulsion box as an example. The data comparison shows that the comprehensive performance of the low-carbon and low-cost multi-objective optimization is the best, which meets the requirements of low-carbon processing, low-cost, and sustainable production.


Sign in / Sign up

Export Citation Format

Share Document