A New Technology for Recovery of Metals from Waste Printed Circuit Boards

2014 ◽  
Vol 675-677 ◽  
pp. 698-703 ◽  
Author(s):  
Wei Liu ◽  
Chao Liang ◽  
Wen Qing Qin ◽  
Fen Jiao

Recycling of metallic fractions from waste printed circuit boards (PCBs) using gravity separation and hydrometallurgy was investigated. The obtained research fruits were listed as follows: (1) When being pulverized to finer than 0.4mm, waste PCBs could be generally dissociated from plastics. (2) Shaking table was shown to be suitable for processing pulverized PCBs. Pulverized PCBs containing 6.97% copper was enriched to 33.55% in a single operation and the copper recovery was 90.3% in the best size range of separation. (3) Pressure oxidation leaching was shown to be effective for separating copper from aluminum and tin. The leaching extraction of aluminum and tin were 86.6% and 96.3%, copper extraction was 1% or less under the optimal conditions.

JOM ◽  
2020 ◽  
Author(s):  
Joona Rajahalme ◽  
Siiri Perämäki ◽  
Roshan Budhathoki ◽  
Ari Väisänen

AbstractThis study presents an optimized leaching and electrowinning process for the recovery of copper from waste printed circuit boards including studies of chemical consumption and recirculation of leachate. Optimization of leaching was performed using response surface methodology in diluted sulfuric acid and hydrogen peroxide media. Optimum leaching conditions for copper were found by using 3.6 mol L−1 sulfuric acid, 6 vol.% hydrogen peroxide, pulp density of 75 g L−1 with 186 min leaching time at 20°C resulting in complete leaching of copper followed by over 92% recovery and purity of 99.9% in the electrowinning. Study of chemical consumption showed total decomposition of hydrogen peroxide during leaching, while changes in sulfuric acid concentration were minor. During recirculation of the leachate with up to 5 cycles, copper recovery and product purity remained at high levels while acid consumption was reduced by 60%.


2021 ◽  

<p>In this research, the selective leaching of copper from waste printed circuit boards (PCBs) using glycine as a complexing agent was investigated. PCBs were pulverized and sieved, which allowed obtaining a PCBs powder of particle size fraction ≤ 1mm. The PCBs powder has been characterized by several techniques before and after leaching. In order to understand the copper extraction process, the reaction mechanisms, and to determine the optimal leaching parameters, the effects of a range of parameters during copper leaching were investigated, including leaching time, solid-to-liquid ratio, mechanical stirring rate, leaching temperature and glycine concentration. Copper leaching from PCBs waste powder was identified as a complex four-stage gas-liquid-solid process that is carried out slowly under ambient conditions. Glycine shows a very significant selectivity for copper during leaching process allowing dissolving copper from PCBs waste with a percentage of 92.8% under ambient conditions.</p>


2011 ◽  
Vol 32 (2) ◽  
pp. 90-104 ◽  
Author(s):  
Hoang Long Le ◽  
Jinki Jeong ◽  
Jae-Chun Lee ◽  
Banshi D. Pandey ◽  
Jae-Min Yoo ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document