A Personalized Recommendation Model Based on Contextual Information

2015 ◽  
Vol 713-715 ◽  
pp. 1530-1533
Author(s):  
Yuan Zi He

Personalized recommendation offers a new way to solve the problem of information overload. In order to effectively build user model and improve the effect of personalized recommendation, this paper proposes a novel model for mining contextual information of non-structure text, and insects the contextual information into user model, which enriches user model. The experiment results shown that the model can greatly improve the recommendation performance when the model is applied to contextual data of the recommender system in hotel.

2021 ◽  
pp. 1-12
Author(s):  
Lv YE ◽  
Yue Yang ◽  
Jian-Xu Zeng

The existing recommender system provides personalized recommendation service for users in online shopping, entertainment, and other activities. In order to improve the probability of users accepting the system’s recommendation service, compared with the traditional recommender system, the interpretable recommender system will give the recommendation reasons and results at the same time. In this paper, an interpretable recommendation model based on XGBoost tree is proposed to obtain comprehensible and effective cross features from side information. The results are input into the embedded model based on attention mechanism to capture the invisible interaction among user IDs, item IDs and cross features. The captured interactions are used to predict the match score between the user and the recommended item. Cross-feature attention score is used to generate different recommendation reasons for different user-items.Experimental results show that the proposed algorithm can guarantee the quality of recommendation. The transparency and readability of the recommendation process has been improved by providing reference reasons. This method can help users better understand the recommendation behavior of the system and has certain enlightenment to help the recommender system become more personalized and intelligent.


2021 ◽  
Vol 11 (19) ◽  
pp. 8993
Author(s):  
Qinglong Li ◽  
Jaekyeong Kim

Recently, the worldwide COVID-19 pandemic has led to an increasing demand for online education platforms. However, it is challenging to correctly choose course content from among many online education resources due to the differences in users’ knowledge structures. Therefore, a course recommender system has the essential role of improving the learning efficiency of users. At present, many online education platforms have built diverse recommender systems that utilize traditional data mining methods, such as Collaborative Filtering (CF). Despite the development and contributions of many recommender systems based on CF, diverse deep learning models for personalized recommendation are being studied because of problems such as sparsity and scalability. Therefore, to solve traditional recommendation problems, this study proposes a novel deep learning-based course recommender system (DECOR), which elaborately captures high-level user behaviors and course attribute features. The DECOR model can reduce information overload, solve high-dimensional data sparsity problems, and achieve high feature information extraction performance. We perform several experiments utilizing real-world datasets to evaluate the DECOR model’s performance compared with that of traditional recommendation approaches. The experimental results indicate that the DECOR model offers better and more robust recommendation performance than the traditional methods.


PLoS ONE ◽  
2021 ◽  
Vol 16 (3) ◽  
pp. e0248695
Author(s):  
Nurul Aida Osman ◽  
Shahrul Azman Mohd Noah ◽  
Mohammad Darwich ◽  
Masnizah Mohd

Recently. recommender systems have become a very crucial application in the online market and e-commerce as users are often astounded by choices and preferences and they need help finding what the best they are looking for. Recommender systems have proven to overcome information overload issues in the retrieval of information, but still suffer from persistent problems related to cold-start and data sparsity. On the flip side, sentiment analysis technique has been known in translating text and expressing user preferences. It is often used to help online businesses to observe customers’ feedbacks on their products as well as try to understand customer needs and preferences. However, the current solution for embedding traditional sentiment analysis in recommender solutions seems to have limitations when involving multiple domains. Therefore, an issue called domain sensitivity should be addressed. In this paper, a sentiment-based model with contextual information for recommender system was proposed. A novel solution for domain sensitivity was proposed by applying a contextual information sentiment-based model for recommender systems. In evaluating the contributions of contextual information in sentiment-based recommendations, experiments were divided into standard rating model, standard sentiment model and contextual information model. Results showed that the proposed contextual information sentiment-based model illustrates better performance as compared to the traditional collaborative filtering approach.


Author(s):  
Shahzad Ahmed Khan

Recommender systems help humans in filtering and finding the right information from the enormous amount of data. Hostels are more famous than hotels for solo travelers, but no prior research related to recommender systems has been conducted in this domain. Hostels allow users to provide multi-criteria ratings and traditional recommender systems are not able to provide effective recommendations in case of multi-dimensionality i.e. contextual information and multi-criteriaratings. So, we have proposed a novel hybrid recommender system (SAFCHERS) that chooses the hostel's features for computation dynamically and provides explainable and better recommendations than the traditional recommender systems.


2019 ◽  
Vol 4 (4) ◽  
pp. 42-55
Author(s):  
Gaihong Yu ◽  
Zhixiong Zhang ◽  
Huan Liu ◽  
Liangping Ding

Abstract Purpose Move recognition in scientific abstracts is an NLP task of classifying sentences of the abstracts into different types of language units. To improve the performance of move recognition in scientific abstracts, a novel model of move recognition is proposed that outperforms the BERT-based method. Design/methodology/approach Prevalent models based on BERT for sentence classification often classify sentences without considering the context of the sentences. In this paper, inspired by the BERT masked language model (MLM), we propose a novel model called the masked sentence model that integrates the content and contextual information of the sentences in move recognition. Experiments are conducted on the benchmark dataset PubMed 20K RCT in three steps. Then, we compare our model with HSLN-RNN, BERT-based and SciBERT using the same dataset. Findings Compared with the BERT-based and SciBERT models, the F1 score of our model outperforms them by 4.96% and 4.34%, respectively, which shows the feasibility and effectiveness of the novel model and the result of our model comes closest to the state-of-the-art results of HSLN-RNN at present. Research limitations The sequential features of move labels are not considered, which might be one of the reasons why HSLN-RNN has better performance. Our model is restricted to dealing with biomedical English literature because we use a dataset from PubMed, which is a typical biomedical database, to fine-tune our model. Practical implications The proposed model is better and simpler in identifying move structures in scientific abstracts and is worthy of text classification experiments for capturing contextual features of sentences. Originality/value T he study proposes a masked sentence model based on BERT that considers the contextual features of the sentences in abstracts in a new way. The performance of this classification model is significantly improved by rebuilding the input layer without changing the structure of neural networks.


Author(s):  
Z. Bahramian ◽  
R. Ali Abbaspour ◽  
C. Claramunt

Users planning a trip to a given destination often search for the most appropriate points of interest location, this being a non-straightforward task as the range of information available is very large and not very well structured. The research presented by this paper introduces a context-aware tourism recommender system that overcomes the information overload problem by providing personalized recommendations based on the user’s preferences. It also incorporates contextual information to improve the recommendation process. As previous context-aware tourism recommender systems suffer from a lack of formal definition to represent contextual information and user’s preferences, the proposed system is enhanced using an ontology approach. We also apply a spreading activation technique to contextualize user preferences and learn the user profile dynamically according to the user’s feedback. The proposed method assigns more effect in the spreading process for nodes which their preference values are assigned directly by the user. The results show the overall performance of the proposed context-aware tourism recommender systems by an experimental application to the city of Tehran.


2021 ◽  
Vol 11 (15) ◽  
pp. 7104
Author(s):  
Xu Yang ◽  
Ziyi Huan ◽  
Yisong Zhai ◽  
Ting Lin

Nowadays, personalized recommendation based on knowledge graphs has become a hot spot for researchers due to its good recommendation effect. In this paper, we researched personalized recommendation based on knowledge graphs. First of all, we study the knowledge graphs’ construction method and complete the construction of the movie knowledge graphs. Furthermore, we use Neo4j graph database to store the movie data and vividly display it. Then, the classical translation model TransE algorithm in knowledge graph representation learning technology is studied in this paper, and we improved the algorithm through a cross-training method by using the information of the neighboring feature structures of the entities in the knowledge graph. Furthermore, the negative sampling process of TransE algorithm is improved. The experimental results show that the improved TransE model can more accurately vectorize entities and relations. Finally, this paper constructs a recommendation model by combining knowledge graphs with ranking learning and neural network. We propose the Bayesian personalized recommendation model based on knowledge graphs (KG-BPR) and the neural network recommendation model based on knowledge graphs(KG-NN). The semantic information of entities and relations in knowledge graphs is embedded into vector space by using improved TransE method, and we compare the results. The item entity vectors containing external knowledge information are integrated into the BPR model and neural network, respectively, which make up for the lack of knowledge information of the item itself. Finally, the experimental analysis is carried out on MovieLens-1M data set. The experimental results show that the two recommendation models proposed in this paper can effectively improve the accuracy, recall, F1 value and MAP value of recommendation.


Sign in / Sign up

Export Citation Format

Share Document