Foliar Application of Abscisic Acid and Sulfonamide Compounds Induced Drought Tolerance in Watermelon

2015 ◽  
Vol 723 ◽  
pp. 705-710
Author(s):  
Wei Shun Cheng ◽  
Dan Li Zeng ◽  
Na Zhang ◽  
Hong Xia Zeng ◽  
Xian Feng Shi ◽  
...  

The effects of exogenous abscisic acid and two sulfonamide compounds: Sulfacetamide and Sulfasalazine were studied on tolerance of watermelon [Citrullus lanatus (Thunb.) Matsum. & Nakai var. lanatus] under drought stress and compared with abscisic acid effects. Eight-week old plants were treated with ABA (10 and 25 mg/L), Sulfacetamide (25, 50 and 100 mg/L) and Sulfasalazine (25,50 and 100 mg/L). Solutions were sprayed daily and sampling was done at 0 h, 48 h, 96 h, 144 h and 48 h after re-watering (recovery phase or 192 h). Treated plants showed relatively greater drought tolerance. This indicates that, Sulfacetamide and Sulfasalazine may improve resistance in watermelon, like ABA, increasing levels of proline, glycine betaine and malondialdehyde and the activity of ascorbate peroxidase. Daily application of Sulfasalazine and Sulfacetamide during drought stress period was effective in increasing watermelon plants tolerance to drought as was ABA.

2017 ◽  
Vol 142 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Nanqing Liu ◽  
Shaoyan Lin ◽  
Bingru Huang

Glycine betaine (GB) and spermidine (Spd) are known to play roles in plant adaptation to stresses that induce dehydration, including drought stress. The objectives of this study were to examine whether improved drought tolerance by exogenous application of GB or Spd is associated with the increases in the endogenous accumulation of those solutes under drought stress in cool-season turfgrass species, and to determine the relative effects of those solutes on osmotic adjustment (OA) and antioxidant metabolism for improving drought tolerance. Creeping bentgrass (Agrostis stolonifera cv. Penncross) plants were treated with 200 mm GB or 0.1 mm Spd for 3 weeks by weekly foliar application before the exposure to drought stress; those plants were subsequently subjected to drought stress by withholding irrigation. The endogenous content of GB and Spd increased significantly through the exogenous application of either compound, to a greater magnitude for GB. The comparison of GB- or Spd-treated plants to untreated plants exposed to drought stress for growth [turf quality (TQ)] and physiological responses (water relations, membrane stability, and antioxidant metabolism) demonstrated that both compounds led to significant improvement in drought tolerance in creeping bentgrass. The improved drought tolerance by exogenous GB could be due to its contribution to OA by significant accumulation of endogenous GB, and activation of antioxidant enzymes with the greatest effects on ascorbate peroxidase (APX). Exogenous Spd did not cause increases in leaf OA despite of the increased endogenous accumulation, but significantly enhanced antioxidant enzyme activities, with the most pronounced effects on catalase (CAT). This study demonstrated that GB and Spd had different effects on OA and activated different antioxidant defense pathways, protecting plants from drought damages in creeping bentgrass.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ramadan Shemi ◽  
Rui Wang ◽  
El-Sayed M. S. Gheith ◽  
Hafiz Athar Hussain ◽  
Saddam Hussain ◽  
...  

AbstractDrought is one of the major environmental stresses that negatively affect the maize (Zea mays L.) growth and production throughout the world. Foliar applications of plant growth regulators, micronutrients or osmoprotectants for stimulating drought-tolerance in plants have been intensively reported. A controlled pot experiment was conducted to study the relative efficacy of salicylic acid (SA), zinc (Zn), and glycine betaine (GB) foliar applications on morphology, chlorophyll contents, relative water content (RWC), gas-exchange attributes, activities of antioxidant enzymes, accumulations of reactive oxygen species (ROS) and osmolytes, and yield attributes of maize plants exposed to two soil water conditions (85% field capacity: well-watered, 50% field capacity: drought stress) during critical growth stages. Drought stress significantly reduced the morphological parameters, yield and its components, RWC, chlorophyll contents, and gas-exchange parameters except for intercellular CO2 concentration, compared with well water conditions. However, the foliar applications considerably enhanced all the above parameters under drought. Drought stress significantly (p < 0.05) increased the hydrogen peroxide and superoxide anion contents, and enhanced the lipid peroxidation rate measured in terms of malonaldehyde (MDA) content. However, ROS and MDA contents were substantially decreased by foliar applications under drought stress. Antioxidant enzymes activity, proline content, and the soluble sugar were increased by foliar treatments under both well-watered and drought-stressed conditions. Overall, the application of GB was the most effective among all compounds to enhance the drought tolerance in maize through reduced levels of ROS, increased activities of antioxidant enzymes and higher accumulation of osmolytes contents.


2003 ◽  
Vol 128 (1) ◽  
pp. 36-41 ◽  
Author(s):  
Zhaolong Wang ◽  
Bingru Huang ◽  
Qingzhang Xu

Abscisic acid (ABA) is an important hormone regulating plant response to drought stress. The objective of this study was to investigate effects of exogenous ABA application on turf performance and physiological activities of kentucky bluegrass (Poa pratensis L.) in response to drought stress. Plants of two kentucky bluegrass cultivars, `Brilliant' (drought susceptible) and `Midnight' (drought tolerant), were treated with ABA (100 μm) or water by foliar application and then grown under drought stress (no irrigation) or well-watered (irrigation on alternate days) conditions in a growth chamber. The two cultivars responded similarly to ABA application under both watering regimes. Foliar application of ABA had no effects on turf quality or physiological parameters under well-watered conditions. ABA application, however, helped maintain higher turf quality and delayed the quality decline during drought stress, compared to the untreated control. ABA-treated plants exposed to drought stress had higher cell membrane stability, as indicated by less electrolyte leakage of leaves, and higher photochemical efficiency, expressed as Fv/Fm, compared to untreated plants. Leaf water potential was not significantly affected, whereas leaf turgor pressure increased with ABA application after 9 and 12 d of drought. Osmotic adjustment increased with ABA application, and was sustained for a longer period of drought in `Midnight' than in `Brilliant'. The results suggested that exogenous ABA application improved turf performance during drought in both drought-sensitive and tolerant cultivars of kentucky bluegrass. This positive effect of ABA could be related to increased osmotic adjustment, cell turgor maintenance, and reduced damage to cell membranes and the photosynthetic system.


2017 ◽  
Author(s):  
Mingxing Tu ◽  
Xianhang Wang ◽  
Yanxun Zhu ◽  
Dejun Wang ◽  
Xuechuan Zhang ◽  
...  

AbstractDrought stress limits the growth and development of grapevines, thereby reducing productivity, but the mechanisms by which grapevines respond to drought stress remain largely uncharacterized. Here, we characterized a group A bZIP gene from ‘Kyoho’ grapevine, VlbZIP30, which was shown to be induced by abscisic acid (ABA) and dehydration stress. Overexpression of VlbZIP30 in transgenic Arabidopsis enhanced dehydration tolerance during seed germination, and in the seedling and adult stages. Transcriptome analysis revealed that a major proportion of ABA- and/or drought-responsive genes are transcriptionally regulated by VlbZIP30 during ABA or mannitol treatment at the cotyledon greening stage. We identified an A. thaliana G-box motif (CACGTG) and a potential grapevine G-box motif (MCACGTGK) in the promoters of the 39 selected A. thaliana genes up-regulated in the transgenic plants and in the 35 grapevine homologs, respectively. Subsequently, using two grapevine-related databases, we found that 74% and 84% (a total of 27 genes) of the detected grapevine genes were significantly up-regulated by ABA and drought stress, respectively, suggesting that these 27 genes involve in ABA or dehydration stress and may be regulated by VlbZIP30 in grapevine. We propose that VlbZIP30 functions as a positive regulator of drought-responsive signaling in the ABA core signaling pathway.HighlightVlbZIP30 positively regulate plant drought tolerance through regulated the expression of 27 grapevine candidate genes via G-box cis-element (MCACGTGK) in ABA signaling pathway.


2008 ◽  
Vol 133 (1) ◽  
pp. 20-26 ◽  
Author(s):  
Stephen E. McCann ◽  
Bingru Huang

The plant growth regulators abscisic acid (ABA) and trinexapac-ethyl (TE) may affect turfgrass responses to drought stress through regulating shoot growth and water relations. The objectives of this study were to investigate the effects of foliar application of TE and ABA on turf growth of two cool-season turfgrass species, Kentucky bluegrass (Poa pratensis L.) and creeping bentgrass (Agrostis stolonifera L.) exposed to drought stress, and to examine water relations associated with changes in drought tolerance due to TE or ABA treatment. ‘L-93’ creeping bentgrass and ‘Brilliant’ Kentucky bluegrass plants were foliar sprayed with 0.904 mL·ha−1 a.i. TE five times before exposure to drought or with 6.75 mL/week of ABA at 100 μm before and after exposure to drought in growth chambers. Drought stress was imposed by withholding irrigation until plants were permanently wilted. Foliar application of TE or ABA maintained higher soil volumetric water content, leaf relative water content, and turf quality for a longer period of time during 28 days of stress exposure for Kentucky bluegrass and creeping bentgrass compared with the untreated control. Leaves of TE-treated and ABA-treated plants in both species also had lower ψS at 28 days of drought stress than the untreated control. Creeping bentgrass treated with TE or ABA and Kentucky bluegrass treated with TE exhibited significantly lower shoot vertical growth rates at the initiation of drought stress, but maintained higher growth rates during prolonged drought compared with the untreated control. Turf treated with TE or ABA also showed higher levels of photochemical efficiency than the untreated control for both species. Our results suggest that TE or ABA application could prolong the survival of turfgrass under conditions of drought stress by suppressing shoot vertical growth and lowering water use during the early phase of drought and by sustaining growth and photosynthetic activity during prolonged periods of drought stress through osmotic adjustment for retaining cellular hydration.


2017 ◽  
Vol 51 (03) ◽  
Author(s):  
Neha Gupta ◽  
Sanjeev Kaur Thind

A field experiment was conducted to investigate influence of exogenous application of glycine betaine (GB) on performance of wheat under prolonged drought conditions. A set of 19 wheat genotypes differing in stress sensitivity, were sprayed with 100mM GB at maximum tillering and anthesis stage. GB treatment significantly declined the phenological pace under drought stress by increasing days to anthesis. Foliar applied GB improved grains/ spike and thousand grain weight of selected wheat genotypes over stressed ones. The genotype specific response to GB application suggested some threshold optimum level to be necessary for yield improvement under drought stress in susceptible genotypes as compared with tolerant ones. In overall, GB alleviated negative effects of drought stress by a rise in harvest index of most genotypes suggesting its role in assimilate translocation.


2006 ◽  
Vol 142 (3) ◽  
pp. 1065-1074 ◽  
Author(s):  
Liming Xiong ◽  
Rui-Gang Wang ◽  
Guohong Mao ◽  
Jessica M. Koczan

Sign in / Sign up

Export Citation Format

Share Document